Geoscience ›› 2020, Vol. 34 ›› Issue (04): 812-820.DOI: 10.19657/j.geoscience.1000-8527.2020.04.16
• Petroleum Geology • Previous Articles Next Articles
YAN Jifa1,2(), MA Anlai3(
), LI Xianqing1,2, CONG Gangshi1,2, HE Yukai1,2, ZHANG Yachao1,2
Received:
2019-06-30
Revised:
2019-09-17
Online:
2020-08-31
Published:
2020-09-03
Contact:
MA Anlai
CLC Number:
YAN Jifa, MA Anlai, LI Xianqing, CONG Gangshi, HE Yukai, ZHANG Yachao. Application of Diamondoids in Geochemical Research of Deep Oil and Gas[J]. Geoscience, 2020, 34(04): 812-820.
学者 | 时间 | 样品 | 主要认识 |
---|---|---|---|
Fang等[ | 2012 | 原油 | 金刚烷在Easy Ro=1.0%~2.1%时生成,Easy Ro>2.1%时开始分解 |
Fang等[ | 2013 | 原油 | 单金刚烷在Easy Ro=1.0%~2.3%时生成,Easy Ro>2.3%时开始分解;双金刚烷在Easy Ro=1.6%~2.7%时生成,Easy Ro>2.7%时开始分解 |
Fang等[ | 2015 | 海相页岩 | 金刚烷在Easy Ro=0.8%~1.7%时生成,Easy Ro>1.7%时开始分解直至Easy Ro=3.0%时基本完全消失 |
房忱琛等[ | 2015 | 煤系泥岩 | 金刚烷在Easy Ro=1.0%~1.5%时生成,Easy Ro>1.5%时开始分解 |
Li等[ | 2015 | 干酪根 | 单金刚烷在Easy Ro=0.8%~1.8%时生成,Easy Ro>1.8%时开始分解;双金刚烷在Easy Ro=1.0%~2.2%时生成,Easy Ro>2.2%时开始分解 |
Jiang等[ | 2018 | 干酪根 | 金刚烷在Easy Ro=0.6%~2.1%时生成,Easy Ro>2.1%时开始分解 |
Table 1 Evolution of diamondoids in crude oil and source rocks
学者 | 时间 | 样品 | 主要认识 |
---|---|---|---|
Fang等[ | 2012 | 原油 | 金刚烷在Easy Ro=1.0%~2.1%时生成,Easy Ro>2.1%时开始分解 |
Fang等[ | 2013 | 原油 | 单金刚烷在Easy Ro=1.0%~2.3%时生成,Easy Ro>2.3%时开始分解;双金刚烷在Easy Ro=1.6%~2.7%时生成,Easy Ro>2.7%时开始分解 |
Fang等[ | 2015 | 海相页岩 | 金刚烷在Easy Ro=0.8%~1.7%时生成,Easy Ro>1.7%时开始分解直至Easy Ro=3.0%时基本完全消失 |
房忱琛等[ | 2015 | 煤系泥岩 | 金刚烷在Easy Ro=1.0%~1.5%时生成,Easy Ro>1.5%时开始分解 |
Li等[ | 2015 | 干酪根 | 单金刚烷在Easy Ro=0.8%~1.8%时生成,Easy Ro>1.8%时开始分解;双金刚烷在Easy Ro=1.0%~2.2%时生成,Easy Ro>2.2%时开始分解 |
Jiang等[ | 2018 | 干酪根 | 金刚烷在Easy Ro=0.6%~2.1%时生成,Easy Ro>2.1%时开始分解 |
缩写 | 公式 | 资料来源 | |
---|---|---|---|
同系 物指标 | MAI | 1-MA/(1-MA+2-MA) | Chen等[ |
MDI | 4-MD/(4-MD+1-MD+3-MD) | ||
DMAI-1 | 1,3-DMA/(1,3-DMA+1,2-DMA) | Wei等[ | |
DMAI-2 | 1,3-DMA/(1,3-DMA+1,4-DMA) | ||
EAI | 1-EA/(1-EA+2-EA) | Schulz等[ | |
TMAI-1 | 1,3,5-TMA/(1,3,5-TMA+1,3,4-TMA) | Wei等[ | |
TMAI-2 | 1,3,5-TMA/(1,3,5-TMA+1,3,6-TMA) | ||
DMDI-1 | 4,9-DMD/(4,9-DMD+3,4-DMD) | Chen等[ | |
DMDI-2 | 4,9-DMD/(4,9-DMD+4,8-DMD) | ||
产率 指标 | A/D | 单金刚烷/双金刚烷 | Fang等[ |
MA/MD | 甲基单金刚烷/甲基双金刚烷 | ||
DMA/DMD | 双甲基单金刚烷/双甲基双金刚烷 | ||
TMA/DMD | 三甲基单金刚烷/三甲基双金刚烷 | ||
As/Ds | 总单金刚烷/总双金刚烷 |
Table 2 Maturity parameters of diamondoids in literature
缩写 | 公式 | 资料来源 | |
---|---|---|---|
同系 物指标 | MAI | 1-MA/(1-MA+2-MA) | Chen等[ |
MDI | 4-MD/(4-MD+1-MD+3-MD) | ||
DMAI-1 | 1,3-DMA/(1,3-DMA+1,2-DMA) | Wei等[ | |
DMAI-2 | 1,3-DMA/(1,3-DMA+1,4-DMA) | ||
EAI | 1-EA/(1-EA+2-EA) | Schulz等[ | |
TMAI-1 | 1,3,5-TMA/(1,3,5-TMA+1,3,4-TMA) | Wei等[ | |
TMAI-2 | 1,3,5-TMA/(1,3,5-TMA+1,3,6-TMA) | ||
DMDI-1 | 4,9-DMD/(4,9-DMD+3,4-DMD) | Chen等[ | |
DMDI-2 | 4,9-DMD/(4,9-DMD+4,8-DMD) | ||
产率 指标 | A/D | 单金刚烷/双金刚烷 | Fang等[ |
MA/MD | 甲基单金刚烷/甲基双金刚烷 | ||
DMA/DMD | 双甲基单金刚烷/双甲基双金刚烷 | ||
TMA/DMD | 三甲基单金刚烷/三甲基双金刚烷 | ||
As/Ds | 总单金刚烷/总双金刚烷 |
[1] | 冯佳睿, 高志勇, 崔京钢, 等. 深层、超深层碎屑岩储层勘探现状与研究进展[J]. 地球科学进展, 2016,31(7):718-736. |
[2] | LANDA S, MACHACEK V. Adamantane, a new hydrocarbon extracted from petroleum[J]. Collection of Czechoslovak Chemical Communications, 1933,5(1):1-5. |
[3] | 米镇涛, 郭建维, 邱立勤. 笼状烃金刚烷的新合成方法[J]. 燃料化学学报, 1998,26(1):89-92. |
[4] | WINGERT W S. GC-MS analysis of diamondoid hydrocarbons in Smackover petroleums[J]. Fuel, 1992,71(1):37-43. |
[5] |
WEI Z B, MOLDOWAN J M, PAYTAN A. Diamondoids and molecular biomarkers generated from modern sediments in the absence and presence of minerals during hydrous pyrolysis[J]. Organic Geochemistry, 2006,37:891-911.
DOI URL |
[6] |
WEI Z B, MOLDOWAN J M, JARVIE D M, et al. The fate of diamondoids in coals and sedimentary rocks[J]. Geology, 2006,34(12):1013-1016.
DOI URL |
[7] |
WEI Z B, MOLDOWAN J M, ZHANG S C, et al. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: geochemical models from hydrous pyrolysis[J]. Organic Geochemistry, 2007,38, 227-249.
DOI URL |
[8] |
LI J G, PAUL P, CUI M Z. Methyl diamantane index ( MDI) as a maturity parameter for Lower Palaeozoic carbonate rocks at high maturity and overmaturity[J]. Organic Geochemistry, 2000,31(4):267-272.
DOI URL |
[9] |
GRICE K, ALEXANDER R, KAGI R I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils[J]. Organic Geochemistry, 2000,31(1):67-73.
DOI URL |
[10] |
CHEN J H, FU J M, SHENG G Y, et al. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996,25(3/4):179-190.
DOI URL |
[11] |
SILVA R C, SILVA R S F, DE CASTRO E V R, et al. Extended diamondoid assessment in crude oil using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Fuel, 2013,112:125-133.
DOI URL |
[12] |
LI S F, HU S Z, CAO J, et al. Diamondoid characterization in condensate by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry: the Junggar basin of Northwest China[J]. International Journal of Molecular Sciences, 2012,13(9):11399-11410.
DOI URL PMID |
[13] |
LIANG Q Y, XIONG Y Q, FANG C C, et al. Quantitative analysis of diamondoids in crude oils using gas chromatography-triple quadrupole mass spectrometry[J]. Organic Geochemistry, 2012,43:83-91.
DOI URL |
[14] |
WANG G L, SHI S B, WANG P R, et al. Analysis of diamondoids in crude oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry[J]. Fuel, 2013,107:706-714.
DOI URL |
[15] | 马安来, 金之钧, 朱翠山, 等. 塔河油田原油中金刚烷化合物绝对定量分析[J]. 石油学报, 2009,30(2):214-218. |
[16] |
张万峰, 童婷, 李东浩, 等. 原油中金刚烷化合物的高效分析方法[J]. 石油实验地质, 2015,37(6):796-808.
DOI URL |
[17] | 陈军红, 傅家谟, 盛国英, 等. 金刚烷化合物在石油中的分布特征研究[J]. 自然科学进展, 1997,7(3):363-367. |
[18] |
FANG C C, XIONG Y Q, LIANG Q Y, et al. Variation in abundance and distribution of diamondoids during oil cracking[J]. Organic Geochemistry, 2012,43(1):1-8.
DOI URL |
[19] |
FANG C C, XIONG Y Q, LI Y, et al. The origin and evolution of adamantanes and diamantanes in petroleum[J]. Geochimica et Cosmochimica Acta, 2013,120(11):109-120.
DOI URL |
[20] | 梁前勇, 熊永强, 房忱琛, 等. 两种测定原油中金刚烷化合物方法的对比研究[J]. 地球化学, 2012,41(5):433-441. |
[21] |
DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999,399(5):54-57.
DOI URL |
[22] |
SPRINGER M V, GARCIA D F, GONCALVES F T T, et al. Diamondoid and biomarker characterization of oils from the Llanos Orientales Basin, Colombia[J]. Organic Geochemistry, 2010,41(9):1013-1018.
DOI URL |
[23] |
SCHULZ L K, WILHELMS A, REIN E, et al. Application of diamondoids to distinguish source rock facies[J]. Organic Geochemistry, 2001,32(3):365-375.
DOI URL |
[24] |
李素梅, 庞雄奇, 杨海军, 等. 塔中I号坡折带高熟油气地球化学特征及其意义[J]. 石油与天然气地质, 2008,29(2):210-216.
DOI URL |
[25] |
BERWICK L, ALEXANDER R, PIERCE K. Formation and reactions of alkyl adamantanes in sediments: carbon surface reactions[J]. Organic Geochemistry, 2011,42:752-761.
DOI URL |
[26] |
GIRUTS M V, RUSINOVA G V, GORDADZE G N. Generation of adamantanes and diamantanes by thermal cracking of high-molecular-mass saturated fractions of crude oils of different genotypes[J]. Petroleum Chemistry, 2006,46(4):225-236.
DOI URL |
[27] |
GIRUTS M V, GORDADZE G N. Generation of adamantanes and diamantanes by thermal cracking of polar components of crude oils of different genotypes[J]. Petroleum Chemistry, 2007,47(1):12-22.
DOI URL |
[28] |
GORDADZE G N, GIRUTS M V. Synjournal of adamantane and diamantane hydrocarbons by high-temperature cracking of higher n-alkanes[J]. Petroleum Chemistry, 2008,48(6):414-419.
DOI URL |
[29] |
FANG C C, XIONG Y Q, LI Y, et al. Generation and evolution of diamondoids in source rock[J]. Marine and Petroleum Geology, 2015,67:197-203.
DOI URL |
[30] |
房忱琛, 吴伟, 刘丹, 等. 煤系中金刚烷化合物演化特征及应用[J]. 天然气地球科学, 2015,26(1):110-117.
DOI URL |
[31] |
LI Y, CHEN Y, XIONG Y Q, et al. Origin of adamantanes and diamantanes in marine source rock[J]. Energy Fuels, 2015,29:8188-8194.
DOI URL |
[32] |
JIANG W M, LI Y, XIONG Y Q. The effect of organic matter type on formation and evolution of diamondoids[J]. Marine and Petroleum Geology, 2018,89:714-720.
DOI URL |
[33] | 陈军红, 傅家谟, 盛国英, 等. 金刚烷化合物的结构特征及其地球化学意义[J]. 科学通报, 1996,41(6):524-527. |
[34] |
郑伦举, 曹建平, 薛建华, 等. 原油及烃源岩成熟度的新指标—甲基双金刚烷指数[J]. 石油实验地质, 1998,20(4):411-416.
DOI URL |
[35] |
ZHANG S C, HUANG H P, XIAO Z Y, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China. Part 2: Maturity assessment[J]. Organic Geochemistry, 2005,36:1215-1225.
DOI URL |
[36] | 郭小文, 何生, 陈红汉. 甲基双金刚烷成熟度指标讨论与应用[J]. 地质科技情报, 2007,26(1):71-76. |
[37] |
LI Y, XIONG Y Q, LIANG Q Y, et al. The application of diamondoid indices in the Tarim oils[J]. AAPG Bulletin, 2018,102(2):267-291.
DOI URL |
[38] | 张水昌, 赵文智, 王飞宇, 等. 塔里木盆地东部地区古生界原油裂解气成藏历史分析——以英南2气藏为例[J]. 天然气地球科学, 2004,15(5):441-451. |
[39] | 马安来, 金之钧, 朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学, 2017,28(2):313-323. |
[40] |
WILLIAMS J A, BJORϕY M, DOLCATER D L, et al. Biodegradation in South Texas Eocene oils—Effects on aromatics and biomarkers[J]. Organic Geochemistry, 1986,10(3/4):451-461.
DOI URL |
[41] |
WEI Z B, MOLDOWAN J M, PETERS K E, et al. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: Implications for biodegradation of diamondoids in petroleum reservoirs[J]. Organic Geochemistry, 2007,38(11):1910-1926.
DOI URL |
[42] |
CHENG X, HOU D J, XU C G. The effect of biodegradation on adamantanes in reservoired crude oils from the Bohai Bay Basin, China[J]. Organic Geochemistry, 2018,123:38-43.
DOI URL |
[43] | HANIN S, ADAM P, KOWALEWSKI I, et al. Bridgehead alkylated 2-thiaadamantanes: novel markers for sulfurisation occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002,16:1750-1751. |
[44] | 姜乃煌, 朱光有, 张水昌, 等. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义[J]. 科学通报, 2007,52(24):2871-2875. |
[45] |
WEI Z B, WALTERS C C, MOLDOWAN J M, et al. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J]. Organic Geochemistry, 2012,44:53-70.
DOI URL |
[46] |
CAI C F, AMRANI A, WORDEN R H, et al. Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Geochimica et Cosmochimica Acta, 2016,182:88-108.
DOI URL |
[47] |
CAI C F, XIAO Q L, FANG C C, et al. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Organic Geochemistry, 2016,101:49-62.
DOI URL |
[48] | 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018,39(1):313-323. |
[49] |
MOLDOWAN J M, DAHL J, ZINNIKER D, et al. Underutilized advanced geochemical technologies for oil and gas exploration and production-1: The diamondoids[J]. Journal of Petroleum Science and Engineering, 2015,126:87-96.
DOI URL |
[50] |
PETERSEN H I, CUMMING D, DUJONCQUOY E. Geochemical composition of oils in the Dunga Field, western Kazakhstan: Evidence for a lacustrine source and a complex filling history[J]. Organic Geochemistry, 2018,115:174-187.
DOI URL |
[51] | 吴楠, 蔡忠贤. 轮南低凸起原油中金刚烷化合物的相分馏响应[J]. 断块油气田, 2012,19(4):458-461. |
[52] |
CHAKHMAKHCHEV A, SANDERSON J, PEARSON C, et al. Compositional changes of diamondoid distributions caused by simulated evaporative fractionation[J]. Organic Geochemistry, 2017,113:224-228.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||