现代地质 ›› 2017, Vol. 31 ›› Issue (02): 394-405.
丁莹莹1(), 张绪教1(
), 何泽新2, 胡道功3, 王超群1
收稿日期:
2016-04-22
修回日期:
2017-01-04
出版日期:
2017-04-10
发布日期:
2017-04-25
通讯作者:
张绪教,男,博士,副教授,1964年出生,第四纪地质学专业,主要从事地貌与第四纪地质、新构造运动的教学及科研工作。Email:作者简介:
丁莹莹,女,硕士研究生,1992年出生,地理学专业,主要从事构造地貌研究。Email:dingyingying555@sina.com。
基金资助:
DING Yingying1(), ZHANG Xujiao1(
), HE Zexin2, HU Daogong3, WANG Chaoqun1
Received:
2016-04-22
Revised:
2017-01-04
Online:
2017-04-10
Published:
2017-04-25
摘要:
末次冰期是距离人类最近的一次冰期,气候异常寒冷且存在高频高幅波动,河流系统如何响应冰期气候的变化值得关注与研究。基于河流系统对气候变化的敏感响应,传统的经典地貌理论认为河流下切在河流阶地形成过程中起着至关重要的作用,河流的下切行为发生在间冰期或者冰期向间冰期的过渡阶段,堆积行为发生于冰期,然而近年来最新的河流地貌研究成果表明,末次冰期河流下切较为普遍。首先对河流阶地形成的传统模式进行总结分析,认为单纯的构造驱动模式存在不合理性,气候也发挥着重要的调节作用;单一的气候变化无法驱动多级且高差较大阶地的形成,地壳抬升往往是必要因素;气候变化是引发河流堆积-下切行为转换形成河流阶地的关键因素。其次通过前人的研究案例总结出末次冰期河流下切行为响应气候变化的三种模式:(1)气候的高度不稳定性引发大规模的洪水事件驱动河流快速下切;(2)快速隆升区气候高频波动叠加构造抬升驱动河流下切;(3)沿海平原地区海平面大幅度下降驱动河流下切。这三种模式对于理解末次冰期河流系统对短尺度高频气候变化的响应以及对河流阶地成因的判断具有十分重要的指导意义。
中图分类号:
丁莹莹, 张绪教, 何泽新, 胡道功, 王超群. 末次冰期河流下切行为对气候变化的响应模式[J]. 现代地质, 2017, 31(02): 394-405.
DING Yingying, ZHANG Xujiao, HE Zexin, HU Daogong, WANG Chaoqun. River Incision Behavior Response to Climate Change During the Last Glacial Period[J]. Geoscience, 2017, 31(02): 394-405.
图1 在构造抬升山地地区河流对气候变化旋回的响应模式(据文献[14]修改) (a)构造稳定区域;(b)轻微构造抬升区域;(c)强烈构造上升区域 1.河漫滩相沉积物;2.河流相沉积物;3.基岩;4.构造抬升趋势;5.气候变化曲线;6.沉积物通量变化曲线;7.曲线的放大部分;8.垂直变化比率
Fig.1 Patterns of rivers responding to climate change cycles in a tectonic uplift region
图2 北美洲大西洋大陆边缘的两条大河Susquehanna河和Potomac河下切速率与古里雅冰心气候曲线对应关系(据文献[35]和[67]修改) (a) Susquehanna河下切速率;(b)Potomac河下切速率;(c)古里雅冰心气候曲线(图中阴影部分为气候高度不稳定区间,同时也为Susquehanna河和Potomac河快速下切阶段)
Fig.2 Comparison of climate change and the incision rate of the Susquehanna River and Potomac River
模式 | 研究地点 | 末次冰期下切 | 其他时段参考 | |||
---|---|---|---|---|---|---|
时间/ka | 速率/(m/ka) | 时间/ka | 速率/(m/ka) | |||
气候-构造 联合驱动 | 金沙江白鹤滩[ | 23.5~ | 1.17 | 1 000~46.5 | 0.4~0.57 | |
金沙江雅砻江[ | 63~ | 1.83 | 1 100~63 | 0.05~0.62 | ||
内蒙古狼山地区[ | 58~23.22 | 4.78~1.50 | 15.57~ | 0.36~0.4 | ||
气候驱动 | 北大西洋Susquehanna河[ | 32~16 | 0.4~0.6 | 32 ka之前 | 0.2左右 | |
北大西洋Potomac 河[ | 37~13 | 0.8 |
表1 末次冰期气候-构造联合驱动河流下切速率与气候驱动河流下切速率对比
Table 1 Comparison of the rate of the river incision between the climatic-tectonic driving model and simple climatic driving model in the Last Glacial Period
模式 | 研究地点 | 末次冰期下切 | 其他时段参考 | |||
---|---|---|---|---|---|---|
时间/ka | 速率/(m/ka) | 时间/ka | 速率/(m/ka) | |||
气候-构造 联合驱动 | 金沙江白鹤滩[ | 23.5~ | 1.17 | 1 000~46.5 | 0.4~0.57 | |
金沙江雅砻江[ | 63~ | 1.83 | 1 100~63 | 0.05~0.62 | ||
内蒙古狼山地区[ | 58~23.22 | 4.78~1.50 | 15.57~ | 0.36~0.4 | ||
气候驱动 | 北大西洋Susquehanna河[ | 32~16 | 0.4~0.6 | 32 ka之前 | 0.2左右 | |
北大西洋Potomac 河[ | 37~13 | 0.8 |
图5 末次冰盛期南京长江四桥附近长江古河槽地质剖面(据文献[88])
Fig.5 Stratigraphic cross-section of the incised valley near the No.4 Nanjing Yangtze River Bridge since Last Glacial Maximum
图6 末次冰盛期墨西哥湾西北发育的河谷和三角洲分布图(据文献[89,91])
Fig.6 Distribution map of the valleys and deltas of northwestern Gulf of Mexico shelf during Last Glacial Maximum
[1] |
KOCHEL R C, MILLER J R. Geomorphic responses to short-term climatic change: an introduction[J]. Geomorphology, 1997, 19(3): 171-173.
DOI URL |
[2] | PENCK A. Versuch einer Klima klassifikation auf physiographische Grundlage,Preussische Akademie der Wissenschaften[J]. Sitz der Phys Math, 1910, 12: 236-246. |
[3] | SOERGEL W. Die Ursachen der Diluvialen Aufschotterung und Erosion[M]. Berlin: Gebrüder Borntraeger, 1921: 74. |
[4] | BRYANT I D. The Utilization of Arctic River Analogue Studies in the Interpretation of Periglacial River Sediments from Southern Britain in Background to Palaeohydrology[M]. Chichester: Wiley, 1983: 413-431. |
[5] | GIBBARD P L. The Pleistocene History of the Middle Thames Valley[M]. Cambridge: Cambridge University Press, 1985: 155. |
[6] |
SEDDON M B, HOLYOAK D T. Evidence of sustained regional permafrost during deposition of fossiliferous Late Pleistocene river sediments at Stanton Harcourt (Oxfordshire, England)[J]. Proceedings of the Geologists’ Association, 1985, 96(1): 53-71.
DOI URL |
[7] | LEOPOLD L B, BULL W B. Base level, aggradation and grade[J]. Proceedings of the American Philosophical Society, 1979, 123(3): 168-202. |
[8] | HACK J T. Interpretation of erosional topography in humid temperate region[J]. American Journal of Science, 1960, 258: 80-97. |
[9] | SCHUMM S A. River Variability and Complexity[M]. Cambridge: Cambridge University Press, 2005: 234. |
[10] | LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20: 1003. |
[11] | LIU D, DING Z, GUO Z. Loess, Environment, and Globalchange[M]. Beijing: Science Press, 1991: 288. |
[12] |
BRIDGLAND D R, WESTAWAY R. Quaternary fluvial archives and landscape evolution: a global synthesis[J]. Proceedings of the Geologists’ Association, 2014, 125(5): 600-629.
DOI URL |
[13] |
PAN B, SU H, HU Z, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 1.24 Ma terrace record near Lanzhou, China[J]. Quaternary Science Reviews, 2009, 28: 3281-3290.
DOI URL |
[14] |
STARKEL L. Climatically controlled terraces in uplifting mountain areas[J]. Quaternary Science Reviews, 2003, 22: 2189-2198.
DOI URL |
[15] |
BOND G, SHOWERS W, CHESEBY M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278: 1257-1266.
DOI URL |
[16] | ROSE J, BOARDMAN J. River activity in relation to short-term climatic deterioration[J]. Quaternary Studies in Poland, 1983, 4: 189-198. |
[17] | VAN HIUSSTEDEN J, VANDENBERGHE J. Changing fluvial style of periglacial lowland rivers during the Weichselian Pleniglacial in the eastern Netherlands[J]. Zeitschrift für Geomorphologie, 1988, 71: 131-146. |
[18] | VAN HUISSTEDEN J. Tundra rivers of the Last Glacial: sedimentation and geomorphological processes during the middle Pleniglacial (eastern Netherlands)[J]. Mededelingen Rijks Geologische, 1990, 44(3):1-13. |
[19] | STARKEL L. Frequency of floods during the Holocene in the Upper Vistula Basin[J]. Studia Geomorphologica Carpatho-Balcanica, 1994, 27: 3-13. |
[20] |
HUISINK M. Changing river styles in response to Weichselian climate changes in the Vecht valley, eastern Netherlands[J]. Sedimentary Geology, 2000, 133(1): 115-134.
DOI URL |
[21] |
MOL J, VANDENBERGHE J, KASSE C. River response to variations of periglacial climate in mid-latitude Europe[J]. Geomorphology, 2000, 33(3): 131-148.
DOI URL |
[22] |
VAN HUISSTEDEN J, KASSE C. Detection of rapid climate change in last glacial fluvial successions in the Netherlands[J]. Global and Planetary Change, 2001, 28(1): 319-339.
DOI URL |
[23] | 程绍平, 邓起东, 李传友, 等. 流水下切的动力学机制、物理侵蚀过程和影响因素:评述和展望[J]. 第四纪研究, 2004, 24(4):421-429. |
[24] |
STOCK J D, MONTGOMERY D R. Geologic constraints on bedrock river incision using the stream power law[J]. Journal of Geophysical Research, 1999, 104: 4983-4993.
DOI URL |
[25] |
WHIPPLE K X, KIRBY E, BROCKLEHURST S H. Geomorphic limits to climate-induced increases in topographic relief[J]. Nature, 1999, 401: 39-43.
DOI |
[26] | FISK H N. Geological Investigation of the Alluvial Valley of the Lower Mississippi Valley[M]. Vicksburg: US Army Corps of Engineers, 1944: 78. |
[27] | WHIPPLE K X, TUCKER G E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research, 1999, 104: 7661-7674. |
[28] |
SKLAR L S, DIETRICH W E. Sediment and rock strength controls on river incision into bedrock[J]. Geology, 2001, 29(12): 1087-1090.
DOI URL |
[29] |
SNYDER N P, WHIPPLE K X, TUCKER G E, et al. Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California[J]. Geomorphology, 2003, 53(1): 97-127.
DOI URL |
[30] |
LAMBECK K, YOKOYAMA Y, PURCELL T. Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2[J]. Quaternary Science Reviews, 2002, 21(1): 343-360.
DOI URL |
[31] |
DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364: 218-220.
DOI |
[32] |
GROOTES P M, STUIVER M, WHITE J W C, et al. Comparison of oxygen records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993, 366: 552-554.
DOI |
[33] |
WANG Y J, CHENG H, EDWARDS R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294: 2345-2348.
PMID |
[34] |
WANG Y J, CHENG H, EDWARDS R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451: 1090-1093.
DOI |
[35] | 姚檀栋. 末次冰期青藏高原的气候突变:古里雅冰芯与格陵兰 GRIP 冰芯对比研究[J]. 中国科学(D辑), 1999, 29(2):175-184. |
[36] |
HEINRICH H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years[J]. Quaternary Research, 1988, 29(2): 142-152.
DOI URL |
[37] |
VANDENBERGHE J. Climate forcing of fluvial system development: an evolution of ideas[J]. Quaternary Science Reviews, 2003, 22: 2053-2060.
DOI URL |
[38] | 鹿化煜, 郭正堂. 末次盛冰期以来气候变化和人类活动对我国沙漠和沙地环境的影响[J]. 中国基础科学, 2015(2):3-8. |
[39] |
CLARK P U, DYKE A S, SHAKUN J D, et al. The Last Glacial Maximum[J]. Science, 2009, 325: 710-714.
DOI PMID |
[40] | PENCK A, BRÜCKNER E. Die Alpen im Eiszeitalter[J]. The Journal of Geology, 1909, 3: 1199. |
[41] | 许刘兵, 周尚哲. 河流阶地形成过程及其驱动机制再研究[J]. 地理科学, 2007, 27(5):672-677. |
[42] |
MADDY D, BRIDGLAND D, WESTAWAY R. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK[J]. Quaternary International, 2001, 79(1): 23-36.
DOI URL |
[43] |
PAN B, BURBANK D, WANG Y, et al. A 900 ky record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology, 2003, 31(11): 957-960.
DOI URL |
[44] |
GAO H, LIU X, PAN B, et al. Stream response to Quaternary tectonic and climatic change: evidence from the upper Weihe River, central China[J]. Quaternary International, 2008, 186(1): 123-131.
DOI URL |
[45] |
PERRINEAU A, VAN Der W J, GAUDEMER Y, et al. Incision rate of the Yellow River in Northeastern Tibet constrained by 10Be and 26Al cosmogenic isotope dating of fluvial terraces: implications for catchment evolution and plateau building[J]. Geological Society of London Special Publications, 2011, 353(1): 189-219.
DOI URL |
[46] |
HOLBROOK J, SCHUMN S A. Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings[J]. Tectonophysics, 1999, 305: 287-306.
DOI URL |
[47] |
MADDY D, BRIDGLAND D R, GREEN C P. Crustal uplift in southern England: evidence from the river terrace records[J]. Geomorphology, 2000, 33(3): 167-181.
DOI URL |
[48] |
BURBANK D W. Rates of erosion and their implications for exhumation[J]. Mineralogical Magazine, 2002, 66(1): 25-52.
DOI URL |
[49] | DARWIN C. Geological Observations on South America:Being the Third Part of the Geology of the Voyage of the Beagle, Under the Command of Capttain Fitzroy, R N During the Years 1832 to 1836[M]. Charleston: Nabu Press, 2010:1-8. |
[50] | CHAMBERS R. Ancient Sea-margins: as Memorials of Changes in the Relative Level of Sea and Land[M]. Edinburgh: W & R Chambers, 1848: 338. |
[51] | LYELL C. The Student’s Elements of Geology[M]. London: John Murray, 1871: 624. |
[52] |
PRESTWICH J. On the loess of the valley of England of the Somme and the Seine[J]. Proceedings of the Royal Society of London, 1862, 12: 170-173.
DOI URL |
[53] | WHITAKER W. Guide to the geology of London and the Neighbourhood:an explanation of the geological survey map of London and its environs, and the geological model of London, in the museum of practical geology[J]. Nature, 1880, 22: 481-482. |
[54] | HOME D M. Notice of some high-water marks on the banks of the river Tweed and some of its tributaries, and also of drift deposits in the valley of the Tweed[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1875, 1: 513-562. |
[55] | DANA J D. Manual of Geology: Treating of the Principles of the Science with Special Reference to American Geological History, for the Use of Colleges Academies and Schools of Science: Illustrated by a Chart of the World and over One Thousand Figures, Mostly from American Sources[M]. Charleston: Nabu Press, 2010:1-8. |
[56] | STILLE H. Einfuhrung in den Bau Amerikas: Berlin[M]. Berlin: Borntraeger, 1940: 771. |
[57] |
HSÜ K J. Time and place in Alpine orogenesis—the Fermor Lecture[J]. Geological Society of London Special Publications, 1989, 45(1): 421-443.
DOI URL |
[58] | SENGOR A M C. Tectonic Subdivisions and Evolution of Asia: Bulletin Sedimentary Basins[M]. Amsterdam: Elsevier, 1987: 355-435. |
[59] |
MOLNAR P, BROWN E T, BURCHFIEL B C, et al. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China[J]. The Journal of Geology, 1994, 102: 583-602.
DOI URL |
[60] |
SUN J M. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24: 1279-1286.
DOI URL |
[61] | 鹿化煜, 安芷生, 王晓勇, 等. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学(D辑), 2004, 34(9):855-864. |
[62] |
MADDY D. Uplift-driven valley incision and river terrace formation in southern England[J]. Journal of Quaternary Science, 1997, 12(6): 539-545.
DOI URL |
[63] |
MADDY D, DEMIR T, BRIDGLAND D R, et al. An obliquity-controlled Early Pleistocene river terrace record from Western Turkey?[J]. Quaternary Research, 2005, 63:339-346.
DOI URL |
[64] |
MADDY D, DEMIR T, BRIDGLAND D R, et al. The Early Pleistocene development of the Gediz River, Western Turkey: An uplift-driven, climate-controlled system?[J]. Quaternary International, 2008, 189:115-128.
DOI URL |
[65] |
VELDKAMP A, VAN DIJKE J J. Simulating internal and external controls on fluvial terrace stratigraphy: a qualitative comparison with the Maas record[J]. Geomorphology, 2000, 33(3): 225-236.
DOI URL |
[66] |
DOĜAN U. Fluvial response to climate change during and after the Last Glacial Maximum in Central Anatolia, Turkey[J]. Quaternary International, 2010, 222: 221-229.
DOI URL |
[67] |
REUSSER L J, BIERMAN P R, PAVICH M J, et al. Rapid Late Pleistocene incision of Atlantic passive-margin river gorges[J]. Science, 2004, 305: 499-502.
PMID |
[68] |
TUCKER G E. Drainage basin sensitivity to tectonic and climatic forcing: Implications of a stochastic model for the role of entrainment and erosion thresholds[J]. Earth Surface Processes and Landforms, 2004, 29(2): 185-205.
DOI URL |
[69] | 黄典, 杨达源, 李郎平, 等. 金沙江白鹤滩河段下切速率初步研究[J]. 第四纪研究, 2010, 30(5):872-876. |
[70] |
HE Z, ZHANG X, BAO S, et al. Multiple climatic cycles imprinted on regional uplift-controlled fluvial terraces in the lower Yalong River and Anning River, SE Tibetan Plateau[J]. Geomorphology, 2015, 250: 95-112.
DOI URL |
[71] |
JIA L, ZHANG X, HE Z, et al. Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, northern China[J]. Geomorphology, 2015, 234: 109-121.
DOI URL |
[72] |
SEIDL M A, DIETRICH W E, KIRCHNER J W. Longitudinal profile development into bedrock: an analysis of Hawaiian channels[J]. The Journal of Geology, 1994, 102: 457-474.
DOI URL |
[73] |
PAZZAGLIA F J, GARDNER T W. Fluvial terraces of the lower Susquehanna River[J]. Geomorphology, 1993, 8(2/3): 83-113.
DOI URL |
[74] |
MILLAR R G. Influence of bank vegetation on alluvial channel patterns[J]. Water Resources Research, 2000, 36(4): 1109-1118.
DOI URL |
[75] |
SCHUMM S A. River response to baselevel change: implications for sequence stratigraphy[J]. The Journal of Geology, 1993, 101: 279-294.
DOI URL |
[76] | BUTENKO J, YE Y, MILLIMAN J D. Morphology, sediments and Late Quaternary history of the East China Sea[M]//Anon. Proceedings of the International Symposium on Sedimentation on the Continental Shelf, with Special Reference to the East China Sea. Beijing: China Ocean Press, 1983: 725-751. |
[77] | MILLIMAN J D, QIN Y S, PARK Y A. Sediments and Sedimentary Processes in the Yellow and East China Seas[M]. Tokyo: Terra Scientific Publishing Company, 1989: 233-249. |
[78] |
LIU Z X. Yangtze Shoal—a modern tidal sand sheet in the northwestern part of the East China Sea[J]. Marine Geology, 1997, 137(3): 321-330.
DOI URL |
[79] |
SAITO Y, KATAYAMA H, IKEHARA K, et al. Transgressive and highstand systems tracts and post-glacial transgression, the East China Sea[J]. Sedimentary Geology, 1998, 122(1): 217-232.
DOI URL |
[80] | 刘振夏. 东海陆架的古河道和古三角洲[J]. 海洋地质与第四纪地质, 2000, 20(1):9-14. |
[81] |
LIU Z X, BERNE S, SAITO Y, et al. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea[J]. Journal of Asian Earth Sciences, 2000, 18(4): 441-452.
DOI URL |
[82] |
YOO D G, LEE C W, KIM S P, et al. Late Quaternary transgressive and highstand systems tracts in the northern East China Sea mid-shelf[J]. Marine Geology, 2002, 187(3): 313-328.
DOI URL |
[83] |
BERNE S, VAGNER P, GUICHARD F, et al. Pleistocene forced regressions and tidal sand ridges in the East China Sea[J]. Marine Geology, 2002, 188(3): 293-315.
DOI URL |
[84] | 赵松龄, 刘敬圃. 晚更新世末期陆架沙漠化环境演化模式的探讨[J]. 中国科学(D辑), 1996, 26(2):142-146. |
[85] | 李广雪, 刘勇, 杨子赓, 等. 末次冰期东海陆架平原上的长江古河道[J]. 中国科学(D辑), 2005, 35(3):284-289. |
[86] |
李从先, 张桂甲. 末次冰期时存在入海的长江吗?[J]. 地理学报, 1995, 50(5):459-463.
DOI |
[87] | 李从先, 陈庆强, 范代读, 等. 末次盛冰期以来长江三角洲地区的沉积相和古地理[J]. 古地理学报, 1999, 1(4):12-25. |
[88] | 曹光杰, 王建, 张学琴, 等. 末次冰盛期长江南京段河槽特征及古流量[J]. 地理学报, 2009, 64(3):331-338. |
[89] | SUTER J R, BERRYHILL Jr H L. Late Quaternary shelf-margin deltas, northwest Gulf of Mexico[J]. AAPG Bulletin, 1985, 69(1): 77-91. |
[90] | MORTON R A, SUTER J R. Sequence stratigraphy and composition of Late Quaternary shelf-margin deltas, northern Gulf of Mexico[J]. AAPG bulletin, 1996, 80(4): 505-530. |
[91] |
ANDERSON J B, ABDULAH K, SARZALEJO S, et al. Late Quaternary sedimentation and high-resolution sequence stratigraphy of the east Texas shelf[J]. Geological Society of London Special Publications, 1996, 117(1): 95-124.
DOI URL |
[92] |
KNOX J C. Late Quaternary Upper Mississippi River alluvial episodes and their significance to the Lower Mississippi River system[J]. Engineering Geology, 1996, 45(1): 263-285.
DOI URL |
[93] | BRIDGLAND D R, INNES J B, LONG A J, et al. Late Quaternary Landscape Evolution of the Swale-Ure Washlands, North Yorkshire[M]. Oxford: Oxbow Books, 2011:325. |
[94] |
MOLNAR P. Climate change, flooding in arid environments, and erosion rates[J]. Geology, 2001, 29(12): 1071-1074.
DOI URL |
[95] |
VANDENBERGHE J. Timescales, climate and river development[J]. Quaternary Science Reviews, 1995, 14(6): 631-638.
DOI URL |
[1] | 蔡胤璐, 武法东, 韩晋芳, 黄震, 周莹, 刘宝印, 谌杨杨. 沂蒙山世界地质公园岱崮地貌特征、成因及演化[J]. 现代地质, 2023, 37(04): 1065-1074. |
[2] | 王建勇,张绪教,何泽新,赵秋晨,何祥丽,盛余应. 黄土高原北缘中部末次冰期冰楔假型的发现及意义[J]. 现代地质, 2015, 29(4): 816-824. |
[3] | 赵秋晨,张绪教,何泽新,何祥丽,王建勇,傅连珍,贾丽云. 六盘山东麓泾河上游河流阶地的形成年代及新构造运动意义[J]. 现代地质, 2014, 28(6): 1202-1212. |
[4] | 张蕾,张绪教,武法东,何泽新,田珺,于航,王春林,刘江红. 太行山南缘晚更新世以来河流阶地的发育及其新构造运动意义[J]. 现代地质, 2013, 27(4): 791-798. |
[5] | 常宏, 金维群, 王世昌, 肖尚斌. 鄂西清江下游中更新世晚期以来的河流演化[J]. 现代地质, 2012, 26(1): 99-106. |
[6] | 吴珍汉, 吴中海, 胡道功, 周春景, 叶培盛, 张耀玲. 青藏高原古大湖与夷平面的关系及高原面形成演化过程[J]. 现代地质, 2009, 23(6): 993-1002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||