Geoscience ›› 2023, Vol. 37 ›› Issue (04): 933-942.DOI: 10.19657/j.geoscience.1000-8527.2022.020
• Water Resources and Environmental Geology • Previous Articles Next Articles
LIU Shengfeng1(), GAO Bai1,2(
), YI Ling3, FANG Zheng1, SHI Tiancheng1, DING Yan1
Received:
2022-01-18
Revised:
2022-04-17
Online:
2023-08-10
Published:
2023-09-02
CLC Number:
LIU Shengfeng, GAO Bai, YI Ling, FANG Zheng, SHI Tiancheng, DING Yan. Arsenic-Uranium Distribution Characteristics and Risk Assessment in the Aquatic Environment of Hailar Basin[J]. Geoscience, 2023, 37(04): 933-942.
水样 类型 | 项目 | pH | TDS | Eh | K+ | Na+ | Ca2+ | Mg2+ | Cl- | Fe2+ | Fe3+ | As | U | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
地表水 | 最小值 | 8.16 | 255.00 | 163.00 | 4.57 | 38.70 | 23.94 | 17.49 | 13.60 | 4.29 | 0.00 | 345.43 | 0.078 | 0.086 | 0.024 | 0.018 |
最大值 | 9.88 | 1080.00 | 238.00 | 15.06 | 251.85 | 38.45 | 64.65 | 97.97 | 32.68 | 0.32 | 673.94 | 0.160 | 0.743 | 0.102 | 0.135 | |
平均值 | 8.94 | 648.75 | 191.25 | 10.67 | 166.15 | 29.47 | 39.02 | 59.08 | 17.93 | 0.08 | 467.51 | 0.112 | 0.344 | 0.060 | 0.072 | |
标准差 | 0.66 | 351.45 | 29.34 | 3.87 | 88.33 | 5.85 | 17.05 | 31.97 | 13.52 | 0.14 | 123.68 | 0.030 | 0.244 | 0.033 | 0.044 | |
变异系数 | 0.07 | 0.54 | 0.15 | 0.36 | 0.53 | 0.20 | 0.44 | 0.54 | 0.75 | 1.73 | 0.26 | 0.272 | 0.710 | 0.542 | 0.609 | |
地下水 | 最小值 | 7.12 | 244.00 | -133.00 | 0.67 | 12.87 | 5.79 | 5.23 | 4.16 | 4.17 | 0.00 | 90.04 | 0.029 | 0.085 | 0.005 | 0.017 |
最大值 | 8.63 | 3690.00 | 329.00 | 49.17 | 625.79 | 123.11 | 164.03 | 909.33 | 417.82 | 32.81 | 803.11 | 0.131 | 4.477 | 0.123 | 0.257 | |
平均值 | 7.77 | 1195.44 | 188.52 | 7.77 | 5.28 | 240.83 | 49.85 | 224.41 | 97.44 | 7.59 | 405.36 | 0.052 | 0.411 | 0.036 | 0.075 | |
标准差 | 0.34 | 819.06 | 100.86 | 7.98 | 175.62 | 26.62 | 28.78 | 230.55 | 94.47 | 6.96 | 160.13 | 0.023 | 0.854 | 0.025 | 0.048 | |
变异系数 | 0.04 | 0.69 | 0.54 | 1.51 | 0.73 | 0.53 | 0.68 | 1.03 | 0.97 | 0.92 | 0.40 | 0.436 | 2.080 | 0.689 | 0.637 |
Table 1 Characteristics of water quality indicators in the Hailar Basin
水样 类型 | 项目 | pH | TDS | Eh | K+ | Na+ | Ca2+ | Mg2+ | Cl- | Fe2+ | Fe3+ | As | U | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
地表水 | 最小值 | 8.16 | 255.00 | 163.00 | 4.57 | 38.70 | 23.94 | 17.49 | 13.60 | 4.29 | 0.00 | 345.43 | 0.078 | 0.086 | 0.024 | 0.018 |
最大值 | 9.88 | 1080.00 | 238.00 | 15.06 | 251.85 | 38.45 | 64.65 | 97.97 | 32.68 | 0.32 | 673.94 | 0.160 | 0.743 | 0.102 | 0.135 | |
平均值 | 8.94 | 648.75 | 191.25 | 10.67 | 166.15 | 29.47 | 39.02 | 59.08 | 17.93 | 0.08 | 467.51 | 0.112 | 0.344 | 0.060 | 0.072 | |
标准差 | 0.66 | 351.45 | 29.34 | 3.87 | 88.33 | 5.85 | 17.05 | 31.97 | 13.52 | 0.14 | 123.68 | 0.030 | 0.244 | 0.033 | 0.044 | |
变异系数 | 0.07 | 0.54 | 0.15 | 0.36 | 0.53 | 0.20 | 0.44 | 0.54 | 0.75 | 1.73 | 0.26 | 0.272 | 0.710 | 0.542 | 0.609 | |
地下水 | 最小值 | 7.12 | 244.00 | -133.00 | 0.67 | 12.87 | 5.79 | 5.23 | 4.16 | 4.17 | 0.00 | 90.04 | 0.029 | 0.085 | 0.005 | 0.017 |
最大值 | 8.63 | 3690.00 | 329.00 | 49.17 | 625.79 | 123.11 | 164.03 | 909.33 | 417.82 | 32.81 | 803.11 | 0.131 | 4.477 | 0.123 | 0.257 | |
平均值 | 7.77 | 1195.44 | 188.52 | 7.77 | 5.28 | 240.83 | 49.85 | 224.41 | 97.44 | 7.59 | 405.36 | 0.052 | 0.411 | 0.036 | 0.075 | |
标准差 | 0.34 | 819.06 | 100.86 | 7.98 | 175.62 | 26.62 | 28.78 | 230.55 | 94.47 | 6.96 | 160.13 | 0.023 | 0.854 | 0.025 | 0.048 | |
变异系数 | 0.04 | 0.69 | 0.54 | 1.51 | 0.73 | 0.53 | 0.68 | 1.03 | 0.97 | 0.92 | 0.40 | 0.436 | 2.080 | 0.689 | 0.637 |
地表水采样编号 | 采样点经度 | 采样点纬度 | 砷(mg/L) | 铀(mg/L) |
---|---|---|---|---|
H1 | 118°47'05″ | 48°45'09″ | 0.082 | 0.018 |
H2 | 117°43'12″ | 47°58'09″ | 0.024 | 0.048 |
H3 | 118°11'26″ | 48°13'12″ | 0.033 | 0.087 |
H4 | 118°09'28″ | 48°23'28″ | 0.102 | 0.135 |
Table 2 Arsenic and uranium contents in surface water sampling spots
地表水采样编号 | 采样点经度 | 采样点纬度 | 砷(mg/L) | 铀(mg/L) |
---|---|---|---|---|
H1 | 118°47'05″ | 48°45'09″ | 0.082 | 0.018 |
H2 | 117°43'12″ | 47°58'09″ | 0.024 | 0.048 |
H3 | 118°11'26″ | 48°13'12″ | 0.033 | 0.087 |
H4 | 118°09'28″ | 48°23'28″ | 0.102 | 0.135 |
[1] |
ALI W, ASLAM M W, FENG C Y, et al. Unraveling prevalence and public health risks of arsenic, uranium and co-occurring trace metals in groundwater along riverine ecosystem in Sindh and Punjab, Pakistan[J]. Environmental Geochemistry and Health, 2019, 41(5): 2223-2238.
DOI PMID |
[2] |
MUKHERJEE A, SENGUPTA M K, HOSSAIN M A, et al. Arsenic contamination in groundwater: A global perspective with emphasis on the Asian Scenario[J]. Journal of Health, Population and Nutrition, 2006, 24(2): 142-163.
PMID |
[3] | WHO Guideline for Drinking-Water Quality[S]. 4th ed.Geneva:WHO, 2011. |
[4] |
GUO H M, JIA Y F, WANTY R B, et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao Basin, Inner Mongolia: Implication for origins and fate controls[J]. Science of the Total Environment, 2016, 541: 1172-1190.
DOI URL |
[5] | 易玲, 高柏, 丁小燕, 等. 鄱阳湖流域上游铀尾矿库周边水体中铬形态及健康风险评估[J]. 湖泊科学, 2020, 32(1): 79-88. |
[6] | 秦欢欢, 黄丽想, 陈益平, 等. 拉萨河水体砷和镉的分布特征与健康风险评价[J]. 生态与农村环境学报, 2023, 39(1): 107-114. |
[7] | 黄宏伟, 肖河, 王敦球, 等. 漓江流域水体中重金属污染特征及健康风险评价[J]. 环境科学, 2021, 42(4): 1714-1723. |
[8] | 高杨, 高柏, 林聪业, 等. 某铀矿区水体238U和226Ra污染源项特征及健康风险评价[J]. 有色金属(冶炼部分), 2021(10): 111-120. |
[9] |
郭华明, 杨素珍, 沈照理. 富砷地下水研究进展[J]. 地球科学进展, 2007, 22(11): 1109-1117.
DOI |
[10] | 赵凯, 郭华明, 高存荣. 北方典型内陆盆地高砷地下水的水化学特征及处理技术[J]. 现代地质, 2015, 29(2): 351-360. |
[11] |
YUE S J, WANG G C. Relationship between the hydrogeochemical environment and sandstone-type uranium mineralization in the Ili Basin, China[J]. Applied Geochemistry, 2011, 26(1): 133-139.
DOI URL |
[12] | 周殷竹, 郭华明, 逯海. 高砷地下水中溶解性有机碳和无机碳稳定同位素特征[J]. 现代地质, 2015, 29(2): 252-259. |
[13] | 王煦栋, 刘思金, 徐明. 地下水铀污染与饮用水中铀的健康风险[J]. 环境化学, 2021, 40(6): 1631-1642. |
[14] |
KOBETS S A, PSHINKO G N, PUZYRNAYA L N. Uranium (VI) in natural waters: Study of occurrence forms[J]. Journal of Water Chemistry and Technology, 2012, 34(6): 277-283.
DOI URL |
[15] | 张海阳, 高柏, 葛勤, 等. 海拉尔盆地地下水铀的分布特征及富集规律[J]. 中国环境科学, 2021, 41(1): 223-231. |
[16] |
韩知明, 贾克力, 孙标, 等. 呼伦湖流域地表水与地下水离子组成特征及来源分析[J]. 生态环境学报, 2018, 27(4): 744-751.
DOI |
[17] |
GUO H M, WEN D G, LIU Z Y, et al. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41: 196-217.
DOI URL |
[18] | 王飞飞, 刘池洋, 邱欣卫, 等. 世界砂岩型铀矿探明资源的分布及特征[J]. 地质学报, 2017, 91(9): 2021-2046. |
[19] | 钟翼. 阿拉尔河水中悬浮物及胶体对铀的吸附和迁移的影响[D]. 西宁: 中国科学院大学中国科学院青海盐湖研究所, 2019. |
[20] | US EPA. Guidelines for exposure assessment[R]. Washington DC: Office of Health and Environmental Assessment US EPA, 1992. |
[21] | US EPA. Regional Screening Levels (RSLs)—Generic Tables[EB/OL]. 2017. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. |
[22] |
WU J H, SUN Z C. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China[J]. Exposure and Health, 2016, 8(3): 311-329.
DOI URL |
[23] |
LI P Y, LI X Y, MENG X Y, et al. Appraising groundwater quality and health risks from contamination in a semiarid region of northwest China[J]. Exposure and Health, 2016, 8(3): 361-379.
DOI URL |
[24] |
HE X D, LI P Y, WU J H, et al. Poor groundwater quality and high potential health risks in the Datong Basin, Northern China: Research from published data[J]. Environmental Geochemistry and Health, 2021, 43(2): 791-812.
DOI |
[25] | HUANG Z, ZHANG L, Editorial Board of “A Dictionary of Earth Sciences”.A Dictionary of Earth Sciences, Applied Sciences[M]. Beijing: Geological Publishing House, 2005: 1-366. |
[26] |
PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928.
DOI URL |
[27] | WHO. Guidelines for drinking water quality: fourth edition incorporating the first addendum[S]. Geneva: World Health Organization, 2017. |
[28] | 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2007. |
[29] | US EPA. Exposure Factors Handbook[M]. Washington: Exposure Assessment Group, Office of Health and Environmental Assessment, U.S.Environmental Protection Agency, 1989. |
[30] |
POLIZZOTTO M L, LINEBERGER E M, MATTESON A R, et al. Arsenic transport in irrigation water across rice-field soils in Bangladesh[J]. Environmental Pollution, 2013, 179: 210-217.
DOI PMID |
[31] | WEI B G, YE B X, YU J P, et al. Blood pressure associated with arsenic methylation and arsenic metabolism caused by chronic exposure to arsenic in tube well water[J]. Biomedical and Environmental Sciences, 2017, 30(5): 333-342. |
[32] | 邓雯文, 罗艳丽, 王翔, 等. 地下水-土壤系统中砷含量及健康风险评价[J]. 环境科学与技术, 2021, 44(4): 204-211. |
[33] | TCHOUNWOU P B, PATLOLLA A K, CENTENO J A. Invited reviews: Carcinogenic and systemic health effects associated with arsenic exposure—a critical review[J]. Toxicologic Pathology, 2003, 31(6): 575-588. |
[34] |
ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 443-467.
DOI |
[35] |
CHI H F, HOU Y W, LI G F, et al. In vitro model insights into the role of human gut microbiota on arsenic bioaccessibility and its speciation in soils[J]. Environmental Pollution, 2020, 263: 114580.
DOI URL |
[36] |
PAYNE Τ E, DAVIS J A, WAITE T D. Uranium retention by weathered schists-the role of iron minerals[J]. Radiochimica Acta, 1994, 66/67: 297-304.
DOI URL |
[37] |
PI K F, WANG Y X, XIE X J, et al. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, Northern China[J]. Journal of Hazardous Materials, 2015, 300: 652-661.
DOI PMID |
[38] |
WU Y, WANG Y X, XIE X J. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong Basin, Northern China[J]. Science of the Total Environment, 2014, 472: 809-817.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||