Geoscience ›› 2021, Vol. 35 ›› Issue (06): 1551-1564.DOI: 10.19657/j.geoscience.1000-8527.2021.122
• Gold-polymetallic Mineralization in Qinling Orogens • Previous Articles Next Articles
WANG Chao1,2,3(), WANG Ruiting1,3,4(
), LIU Yunhua1, XUE Yushan2,3, HU Xishun2,3, NIU Liang2,3
Received:
2021-06-21
Revised:
2021-10-12
Online:
2021-12-10
Published:
2022-02-14
Contact:
WANG Ruiting
CLC Number:
WANG Chao, WANG Ruiting, LIU Yunhua, XUE Yushan, HU Xishun, NIU Liang. Fluid Inclusion and C-H-O-S Stable Isotopic Studies of Sanguanmiao Gold Deposit, Shangnan, Shaanxi Province[J]. Geoscience, 2021, 35(06): 1551-1564.
Fig.1 Map showing the major geological units in the Qinling Orogen (a)( modified after ref. [19]) and geological map of the Sanguanmiao ore district (b)
样号 | 主矿物 | 成矿 阶段 | 种类 | 均一温度Th/℃ | 冰点温度Tm,ice/℃ | 盐度/% | 密度ρ/(g/cm3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
个数 | 范围 | 平均 | 个数 | 范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||||
SGM2 | 石英 | 晚阶段 | L-V | 6 | 118~160 | 138 | 5 | -5.1~-3.4 | -4.4 | 5.6~8.0 | 7.1 | 0.956~1.001 | 0.983 | |||
SGM12 | 石英 | 主阶段 | L-V | 12 | 190~420 | 309 | 6 | -7.3~-2.5 | -6.3 | 4.2~10.9 | 9.5 | 0.652~0.909 | 0.770 | |||
V-L | 3 | 190~205 | 2 | -8.7~-7.3 | 10.9~12.5 | 0.943~0.971 | 0.957 | |||||||||
晚阶段 | L-V | 7 | 130-190 | 157 | 6 | -11.6~-5.7 | -7.5 | 8.8~15.6 | 11.0 | 0.949~1.043 | 0.994 | |||||
SGM13 | 斜长石 | 主阶段 | L-V | 4 | 190~210 | 204 | 3 | -8.2~-6.4 | -7.2 | 9.7~11.9 | 10.7 | 0.936~0.949 | 0.944 | |||
石英 | 主阶段 | L-V | 3 | 192~195 | 193 | 2 | -7.2~-6.9 | -7.1 | 10.4~10.7 | 10.5 | 0.954~0.955 | 0.954 | ||||
SGM22 | 方解石 | 主阶段 | L-V | 18 | 150~230 | 184 | 12 | -12.9~-6.8 | -10.4 | 10.2~16.8 | 14.3 | 0.947~1.040 | 0.991 | |||
SGM8 | 石英 | 晚阶段 | L-V | 15 | 81~181 | 156 | 5 | -16.9~-9.7 | -11.4 | 13.6~20.2 | 15.2 | 0.997~1.116 | 1.030 | |||
SGM7 | 石英 | 主阶段 | L-V | 14 | 194~350 | 263 | 11 | -19.0~-1.5 | -10.8 | 2.6~21.7 | 14.1 | 0.792~1.029 | 0.901 | |||
V-L | 1 | 296 | - | - | - | - | - | - | - | |||||||
SGM7 | 石英 | 晚阶段 | L-V | 9 | 127~171 | 141 | 8 | -17.8~-5.5 | -12.1 | 8.6~20.8 | 15.6 | 0.988~1.085 | 1.038 | |||
SGM10 | 石英 | 主阶段 | L-V-S | 1 | 400 | 217 | 1 | - | -22.7 | - | 24.1 | - | 0.849 | |||
L-V | 18 | 170~310 | 18 | -14.1~-1.2 | -10.4 | 2.1~17.9 | 14.1 | 0.804~1.026 | 0.960 | |||||||
SGM11 | 方解石 | 晚阶段 | L-V | 18 | 102~155 | 130 | 18 | -19.7~-6.5 | -12.5 | 9.9~22.2 | 16.1 | 1.009~1.088 | 1.051 | |||
SGM14 | 石英 | 晚阶段 | L-V | 5 | 105~136 | 118 | 5 | -13.7~-10.9 | -12.0 | 14.9~17.5 | -15.9 | 1.036~1.080 | 1.058 |
Table 1 Microthermometric results of fluid inclusions from the Sanguanmiao gold deposit
样号 | 主矿物 | 成矿 阶段 | 种类 | 均一温度Th/℃ | 冰点温度Tm,ice/℃ | 盐度/% | 密度ρ/(g/cm3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
个数 | 范围 | 平均 | 个数 | 范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||||
SGM2 | 石英 | 晚阶段 | L-V | 6 | 118~160 | 138 | 5 | -5.1~-3.4 | -4.4 | 5.6~8.0 | 7.1 | 0.956~1.001 | 0.983 | |||
SGM12 | 石英 | 主阶段 | L-V | 12 | 190~420 | 309 | 6 | -7.3~-2.5 | -6.3 | 4.2~10.9 | 9.5 | 0.652~0.909 | 0.770 | |||
V-L | 3 | 190~205 | 2 | -8.7~-7.3 | 10.9~12.5 | 0.943~0.971 | 0.957 | |||||||||
晚阶段 | L-V | 7 | 130-190 | 157 | 6 | -11.6~-5.7 | -7.5 | 8.8~15.6 | 11.0 | 0.949~1.043 | 0.994 | |||||
SGM13 | 斜长石 | 主阶段 | L-V | 4 | 190~210 | 204 | 3 | -8.2~-6.4 | -7.2 | 9.7~11.9 | 10.7 | 0.936~0.949 | 0.944 | |||
石英 | 主阶段 | L-V | 3 | 192~195 | 193 | 2 | -7.2~-6.9 | -7.1 | 10.4~10.7 | 10.5 | 0.954~0.955 | 0.954 | ||||
SGM22 | 方解石 | 主阶段 | L-V | 18 | 150~230 | 184 | 12 | -12.9~-6.8 | -10.4 | 10.2~16.8 | 14.3 | 0.947~1.040 | 0.991 | |||
SGM8 | 石英 | 晚阶段 | L-V | 15 | 81~181 | 156 | 5 | -16.9~-9.7 | -11.4 | 13.6~20.2 | 15.2 | 0.997~1.116 | 1.030 | |||
SGM7 | 石英 | 主阶段 | L-V | 14 | 194~350 | 263 | 11 | -19.0~-1.5 | -10.8 | 2.6~21.7 | 14.1 | 0.792~1.029 | 0.901 | |||
V-L | 1 | 296 | - | - | - | - | - | - | - | |||||||
SGM7 | 石英 | 晚阶段 | L-V | 9 | 127~171 | 141 | 8 | -17.8~-5.5 | -12.1 | 8.6~20.8 | 15.6 | 0.988~1.085 | 1.038 | |||
SGM10 | 石英 | 主阶段 | L-V-S | 1 | 400 | 217 | 1 | - | -22.7 | - | 24.1 | - | 0.849 | |||
L-V | 18 | 170~310 | 18 | -14.1~-1.2 | -10.4 | 2.1~17.9 | 14.1 | 0.804~1.026 | 0.960 | |||||||
SGM11 | 方解石 | 晚阶段 | L-V | 18 | 102~155 | 130 | 18 | -19.7~-6.5 | -12.5 | 9.9~22.2 | 16.1 | 1.009~1.088 | 1.051 | |||
SGM14 | 石英 | 晚阶段 | L-V | 5 | 105~136 | 118 | 5 | -13.7~-10.9 | -12.0 | 14.9~17.5 | -15.9 | 1.036~1.080 | 1.058 |
序号 | 样号 | 成矿 阶段 | 分析结果/‰ | 计算流体/‰ | ||
---|---|---|---|---|---|---|
δDV-SMOW | δ18OV-SMOW | δ18 | ||||
1 | S13 | 主阶段 | -81.8 | 15.1 | 5.9 | |
2 | S15 | 主阶段 | -80.0 | 15.7 | 6.5 | |
3 | S17 | 主阶段 | -77.0 | 15.3 | 6.1 | |
4 | S19 | 主阶段 | -84.4 | 15.8 | 6.6 | |
5 | S20 | 主阶段 | -78.4 | 15.5 | 6.3 | |
平均 | -80.3 | 15.5 | 6.3 |
Table 2 Hydrogen-oxygen isotope compositions of quartz from the Sanguanmiao gold deposit
序号 | 样号 | 成矿 阶段 | 分析结果/‰ | 计算流体/‰ | ||
---|---|---|---|---|---|---|
δDV-SMOW | δ18OV-SMOW | δ18 | ||||
1 | S13 | 主阶段 | -81.8 | 15.1 | 5.9 | |
2 | S15 | 主阶段 | -80.0 | 15.7 | 6.5 | |
3 | S17 | 主阶段 | -77.0 | 15.3 | 6.1 | |
4 | S19 | 主阶段 | -84.4 | 15.8 | 6.6 | |
5 | S20 | 主阶段 | -78.4 | 15.5 | 6.3 | |
平均 | -80.3 | 15.5 | 6.3 |
序号 | 样号 | 成矿阶段 | 分析结果/‰ | 计算流体/‰ | ||||
---|---|---|---|---|---|---|---|---|
δ13CPDB | δ18OPDB | δ18OV-SMOW | δ13 | δ18 | ||||
1 | S13 | 主阶段 | -12.2 | -16.6 | 13.8 | -12.5 | 3.1 | |
2 | S15 | 主阶段 | -9.0 | -17.1 | 13.3 | -9.3 | 2.6 | |
3 | S16 | 主阶段 | -9.5 | -16.7 | 13.7 | -9.8 | 3.0 | |
4 | S17 | 主阶段 | -8.7 | -19.9 | 10.4 | -9.0 | -0.3 | |
5 | S19 | 主阶段 | -13.2 | -15.9 | 14.6 | -13.5 | 3.9 | |
6 | S20 | 主阶段 | -10.0 | -15.3 | 15.2 | -10.3 | 4.5 | |
7 | S22 | 主阶段 | -4.9 | -15.2 | 15.2 | -5.2 | 4.5 | |
平均 | -9.6 | -16.7 | 13.7 | -9.9 | 3.0 |
Table 3 Carbon-oxygen isotope compositions of calcite from the Sanguanmiao gold deposit
序号 | 样号 | 成矿阶段 | 分析结果/‰ | 计算流体/‰ | ||||
---|---|---|---|---|---|---|---|---|
δ13CPDB | δ18OPDB | δ18OV-SMOW | δ13 | δ18 | ||||
1 | S13 | 主阶段 | -12.2 | -16.6 | 13.8 | -12.5 | 3.1 | |
2 | S15 | 主阶段 | -9.0 | -17.1 | 13.3 | -9.3 | 2.6 | |
3 | S16 | 主阶段 | -9.5 | -16.7 | 13.7 | -9.8 | 3.0 | |
4 | S17 | 主阶段 | -8.7 | -19.9 | 10.4 | -9.0 | -0.3 | |
5 | S19 | 主阶段 | -13.2 | -15.9 | 14.6 | -13.5 | 3.9 | |
6 | S20 | 主阶段 | -10.0 | -15.3 | 15.2 | -10.3 | 4.5 | |
7 | S22 | 主阶段 | -4.9 | -15.2 | 15.2 | -5.2 | 4.5 | |
平均 | -9.6 | -16.7 | 13.7 | -9.9 | 3.0 |
序号 | δ34SCDT/ ‰ | 2σ | 矿物编号 | 矿物 名称 | 单矿物δ34SCDT 均值/‰ | 序号 | δ34SCDT/ ‰ | 2σ | 矿物编号 | 矿物 名称 | 单矿物δ34SCDT 均值/‰ | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | -1.33 | 0.14 | SGM10-1 | 毒砂 | -1.33 | 34 | -2.51 | 0.15 | SGM14-1a | 毒砂 | -2.03 | ||
2 | -2.55 | 0.06 | SGM10-2 | 黄铁矿 | -2.55 | 35 | -1.53 | 0.08 | SGM14-1b | 黄铁矿 | -1.53 | ||
3 | -2.01 | 0.07 | SGM10-3a | 磁黄铁矿 | -2.01 | 36 | -2.78 | 0.15 | SGM14-2 | 毒砂 | -1.65 | ||
4 | -2.73 | 0.10 | SGM10-3b | 黄铁矿 | -2.73 | 37 | -0.65 | 0.15 | |||||
5 | -0.98 | 0.15 | SGM10-5 | 毒砂 | -0.98 | 38 | -1.52 | 0.16 | |||||
6 | -2.32 | 0.07 | SGM5-1a | 黄铁矿 | -2.32 | 39 | -1.70 | 0.14 | SGM14-3 | 毒砂 | -1.70 | ||
7 | -2.33 | 0.07 | SGM5-1b | 黄铁矿 | -2.33 | 40 | -1.98 | 0.15 | |||||
8 | -1.85 | 0.09 | SGM5-1c | 黄铁矿 | -1.85 | 41 | -1.41 | 0.14 | |||||
9 | -2.24 | 0.07 | SGM5-2 | 黄铁矿 | -2.21 | 42 | -2.18 | 0.08 | SGM14-4Pya | 黄铁矿 | -2.19 | ||
10 | -2.18 | 0.07 | 43 | -2.03 | 0.07 | ||||||||
11 | -2.24 | 0.07 | SGM5-3a | 毒砂 | -2.24 | 44 | -2.16 | 0.08 | |||||
12 | -2.74 | 0.07 | SGM5-3b | 毒砂 | -2.74 | 45 | -2.36 | 0.08 | |||||
13 | -2.20 | 0.08 | SGM5-4 | 黄铁矿 | -2.22 | 46 | -1.22 | 0.10 | SGM14-4Pyb | 黄铁矿 | -1.31 | ||
14 | -2.24 | 0.08 | 47 | -1.40 | 0.10 | ||||||||
15 | -2.32 | 0.08 | SGM5-5 | 黄铁矿 | 48 | -1.99 | 0.14 | SGM14-4 | 毒砂 | -2.08 | |||
16 | -2.44 | 0.07 | 49 | -1.69 | 0.14 | ||||||||
17 | -2.12 | 0.08 | SGM5-6 | 毒砂 | -2.12 | 50 | -2.56 | 0.15 | |||||
18 | -3.25 | 0.14 | SGM13-1 | 毒砂 | -3.36 | 51 | -0.45 | 0.15 | SGM1-1 | 毒砂 | 0.03 | ||
19 | -3.47 | 0.15 | 52 | 0.48 | 0.13 | ||||||||
20 | -0.88 | 0.18 | SGM13-2 | 毒砂 | -1.00 | 53 | 0.07 | 0.16 | |||||
21 | -1.18 | 0.19 | 54 | -0.10 | 0.16 | SGM1-2 | 毒砂 | -0.40 | |||||
22 | -0.95 | 0.16 | 55 | -0.94 | 0.15 | ||||||||
23 | -0.78 | 0.16 | SGM13-3 | 毒砂 | -1.47 | 56 | -0.17 | 0.16 | |||||
24 | -1.48 | 0.14 | 57 | -0.09 | 0.15 | SGM22 | 毒砂 | -0.29 | |||||
25 | -2.15 | 0.16 | 58 | -0.92 | 0.13 | ||||||||
26 | -1.92 | 0.08 | SGM7-1a | 黄铁矿 | -1.92 | 59 | -0.12 | 0.14 | |||||
27 | -2.46 | 0.08 | SGM7-1b | 黄铁矿 | -2.46 | 60 | -0.86 | 0.13 | |||||
28 | -1.90 | 0.08 | SGM7-1c | 黄铁矿 | -1.90 | 61 | 0.01 | 0.15 | |||||
29 | -2.43 | 0.07 | SGM7-2 | 黄铁矿 | -2.31 | 62 | 0.23 | 0.12 | |||||
30 | -2.32 | 0.08 | 63 | 0.04 | 0.15 | SGM15-1 | 毒砂 | -0.28 | |||||
31 | -2.28 | 0.08 | 64 | -1.00 | 0.16 | ||||||||
32 | -2.20 | 0.08 | 65 | 0.11 | 0.36 | ||||||||
33 | -1.55 | 0.14 | SGM14-1a | 毒砂 | -2.03 | 66 | -1.53 | 0.17 | SGM15-2 | 毒砂 | -1.53 |
Table 4 In-situ sulfur isotopic compositions of sulfides from the Sanguanmiao gold deposit
序号 | δ34SCDT/ ‰ | 2σ | 矿物编号 | 矿物 名称 | 单矿物δ34SCDT 均值/‰ | 序号 | δ34SCDT/ ‰ | 2σ | 矿物编号 | 矿物 名称 | 单矿物δ34SCDT 均值/‰ | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | -1.33 | 0.14 | SGM10-1 | 毒砂 | -1.33 | 34 | -2.51 | 0.15 | SGM14-1a | 毒砂 | -2.03 | ||
2 | -2.55 | 0.06 | SGM10-2 | 黄铁矿 | -2.55 | 35 | -1.53 | 0.08 | SGM14-1b | 黄铁矿 | -1.53 | ||
3 | -2.01 | 0.07 | SGM10-3a | 磁黄铁矿 | -2.01 | 36 | -2.78 | 0.15 | SGM14-2 | 毒砂 | -1.65 | ||
4 | -2.73 | 0.10 | SGM10-3b | 黄铁矿 | -2.73 | 37 | -0.65 | 0.15 | |||||
5 | -0.98 | 0.15 | SGM10-5 | 毒砂 | -0.98 | 38 | -1.52 | 0.16 | |||||
6 | -2.32 | 0.07 | SGM5-1a | 黄铁矿 | -2.32 | 39 | -1.70 | 0.14 | SGM14-3 | 毒砂 | -1.70 | ||
7 | -2.33 | 0.07 | SGM5-1b | 黄铁矿 | -2.33 | 40 | -1.98 | 0.15 | |||||
8 | -1.85 | 0.09 | SGM5-1c | 黄铁矿 | -1.85 | 41 | -1.41 | 0.14 | |||||
9 | -2.24 | 0.07 | SGM5-2 | 黄铁矿 | -2.21 | 42 | -2.18 | 0.08 | SGM14-4Pya | 黄铁矿 | -2.19 | ||
10 | -2.18 | 0.07 | 43 | -2.03 | 0.07 | ||||||||
11 | -2.24 | 0.07 | SGM5-3a | 毒砂 | -2.24 | 44 | -2.16 | 0.08 | |||||
12 | -2.74 | 0.07 | SGM5-3b | 毒砂 | -2.74 | 45 | -2.36 | 0.08 | |||||
13 | -2.20 | 0.08 | SGM5-4 | 黄铁矿 | -2.22 | 46 | -1.22 | 0.10 | SGM14-4Pyb | 黄铁矿 | -1.31 | ||
14 | -2.24 | 0.08 | 47 | -1.40 | 0.10 | ||||||||
15 | -2.32 | 0.08 | SGM5-5 | 黄铁矿 | 48 | -1.99 | 0.14 | SGM14-4 | 毒砂 | -2.08 | |||
16 | -2.44 | 0.07 | 49 | -1.69 | 0.14 | ||||||||
17 | -2.12 | 0.08 | SGM5-6 | 毒砂 | -2.12 | 50 | -2.56 | 0.15 | |||||
18 | -3.25 | 0.14 | SGM13-1 | 毒砂 | -3.36 | 51 | -0.45 | 0.15 | SGM1-1 | 毒砂 | 0.03 | ||
19 | -3.47 | 0.15 | 52 | 0.48 | 0.13 | ||||||||
20 | -0.88 | 0.18 | SGM13-2 | 毒砂 | -1.00 | 53 | 0.07 | 0.16 | |||||
21 | -1.18 | 0.19 | 54 | -0.10 | 0.16 | SGM1-2 | 毒砂 | -0.40 | |||||
22 | -0.95 | 0.16 | 55 | -0.94 | 0.15 | ||||||||
23 | -0.78 | 0.16 | SGM13-3 | 毒砂 | -1.47 | 56 | -0.17 | 0.16 | |||||
24 | -1.48 | 0.14 | 57 | -0.09 | 0.15 | SGM22 | 毒砂 | -0.29 | |||||
25 | -2.15 | 0.16 | 58 | -0.92 | 0.13 | ||||||||
26 | -1.92 | 0.08 | SGM7-1a | 黄铁矿 | -1.92 | 59 | -0.12 | 0.14 | |||||
27 | -2.46 | 0.08 | SGM7-1b | 黄铁矿 | -2.46 | 60 | -0.86 | 0.13 | |||||
28 | -1.90 | 0.08 | SGM7-1c | 黄铁矿 | -1.90 | 61 | 0.01 | 0.15 | |||||
29 | -2.43 | 0.07 | SGM7-2 | 黄铁矿 | -2.31 | 62 | 0.23 | 0.12 | |||||
30 | -2.32 | 0.08 | 63 | 0.04 | 0.15 | SGM15-1 | 毒砂 | -0.28 | |||||
31 | -2.28 | 0.08 | 64 | -1.00 | 0.16 | ||||||||
32 | -2.20 | 0.08 | 65 | 0.11 | 0.36 | ||||||||
33 | -1.55 | 0.14 | SGM14-1a | 毒砂 | -2.03 | 66 | -1.53 | 0.17 | SGM15-2 | 毒砂 | -1.53 |
[1] | 任涛, 樊忠平, 原莲肖, 等. 南秦岭东段早寒武世黑色岩系金钒成矿特征与找矿方向——以夏家店矿床为例[J]. 西北地质, 2007, 40(2):85-94. |
[2] | 任涛, 王瑞廷, 孟德明, 等. 南秦岭造山型金矿地质特征及成矿模式——以陕西山阳夏家店金(钒)矿床为例[J]. 西北地质, 2014, 47(1):150-158. |
[3] | 刘凯, 王瑞廷, 樊忠平, 等. 秦岭造山带柞水—山阳矿集区夏家店金矿床成矿时代及其地质意义[J]. 矿床地质, 2019, 38(6):1278-1296. |
[4] | 胡西顺, 朱红周, 孟广路, 等. 陕西山阳龙头沟金矿的发现——化探异常评价实例[J]. 矿产与地质, 2005, 19(6):674-678. |
[5] | 胡西顺, 原莲肖, 朱红周, 等. 陕西龙头沟金矿床的地质地球化学特征及成因探讨[J]. 黄金科学技术, 2010, 18(2):1-5. |
[6] | 薛玉山, 寸小妮, 刘新伟, 等. 南秦岭龙头沟金成矿带成矿物质来源:元素及硫同位素证据[J]. 现代地质, 2020, 34(5):1077-1091. |
[7] | 胡西顺, 刘新伟, 汪超, 等. 陕西省山阳县王家坪金矿的发现及其地质意义[J]. 矿床地质, 2012, 31(增1):741-742. |
[8] | 刘新伟, 汪超, 李英, 等. 陕西王家坪金矿床地质特征及成矿规律[J]. 矿产勘查, 2016, 7(4):592-597. |
[9] | 汪超, 门文辉, 吴涛, 等. 陕西三官庙金矿床地质特征、原生晕分带特征及其找矿意义[J]. 黄金科学技术, 2016, 24(6):39-48. |
[10] | 靳小鹏, 韩文龙, 吴铜锤. 论陕西省三官庙金矿地质特征及找矿标志[J]. 华北国土资源, 2014(6):70-72. |
[11] | 胡西顺, 李建斌, 刘新伟, 等. 山阳中村—商南湘河一带金矿成矿地质背景、矿床类型与找矿方向[J]. 陕西地质, 2015, 33(2):70-77. |
[12] | 汪超, 王瑞廷, 刘云华, 等. 陕西商南三官庙金矿床地质特征、金的赋存状态及矿床成因探讨[J]. 矿床地质, 2021, 40(3):491-508. |
[13] | 汪超, 谷玉明, 胡西顺, 等. 陕西三官庙—韭菜沟地区钠长岩与金矿床地质特征及找矿方向[J]. 黄金科学技术, 2017, 25(1):35-45. |
[14] | 胡西顺, 李领军. 陕西省原生金矿类型的划分与金矿的若干问题讨论[J]. 黄金科学技术, 2001, 9(1):1-10. |
[15] | 李勇, 苏春乾, 刘继庆. 东秦岭造山带钠长岩的特征、成因及时代[J]. 岩石矿物学杂志, 1999, 18(2):26-32. |
[16] | 刘冲昊. 陕西双王金矿床成矿机制与成矿规律[D]. 北京: 中国地质大学(北京), 2016. |
[17] | 胡西顺, 朱红周, 汪超, 等. 陕西银硐子银铅多金属矿床成因新探[J]. 矿产勘查, 2019, 10(8):1801-1808. |
[18] | 苏春乾, 胡建民, 李勇, 等. 南秦岭地区存在两种不同构造属性的耀岭河群[J]. 岩石矿物学杂志, 2006, 25(4):287-298. |
[19] |
WANG C M, CHEN L, BAGAS L, et al. Characterization and origin of the Taishanmiao aluminous A-type granites: implications for Early Cretaceous lithospheric thinning at the southern margin of the North China Craton[J]. International Journal of Earth Sciences, 2016, 105(5):1563-1589.
DOI URL |
[20] | 郭林楠, 侯林, 刘书生, 等. 老挝帕奔金矿床成矿流体来源与矿床成因:稀土元素和C、O、S同位素证据[J]. 矿床地质, 2019, 38(2):233-250. |
[21] |
BAO Z A, CHEN L, ZONG C L, et al. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2017, 421:255-262.
DOI URL |
[22] |
CHEN L, CHEN K Y, BAO Z A, et al. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(1):107-116.
DOI URL |
[23] |
YUAN H L, LIU X, CHEN L, et al. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers[J]. Journal of Asian Earth Sciences, 2018, 154:386-396.
DOI URL |
[24] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004. |
[25] | 顾雪祥, 李葆华, 章永梅, 等. 矿床学研究方法及应用[M]. 北京: 地质出版社, 2019. |
[26] |
POTTER P W, CLYNNE M A, BROWN D L. Freezing point depression of aqueous sodium chloride solutions[J]. Economic Geology, 1987, 73:284-285.
DOI URL |
[27] | 刘斌, 段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 1987, 7(4):345-352. |
[28] |
CLAYTON R N, O'NEIL J R, MAYEDA T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77(17):3057-3067.
DOI URL |
[29] | OHMOTO H, RYE R O. Isotopes of sulfur and carbon[M]//BARNES H L. Geochemistry of Hydrothermal Ore Deposits. 2nd ed. New York: John Willey and Sons, 1979: 509-567. |
[30] | ZHENG Y F. On oxygen isotope fractionation in carbonate and sulfate minerals[J]. Chinese Science Bulletin, 1998, 43(S1):161. |
[31] |
WILKINSON J J. Fluid inclusions in hydrothermal ore deposits[J]. Lithos, 2001, 55:229-272.
DOI URL |
[32] | 展恩鹏, 王玭, 齐楠, 等. 河南灵宝樊岔金矿床成矿流体和同位素地球化学研究[J]. 矿床地质, 2019, 38(3):459-478. |
[33] | 张德会. 流体的沸腾和混合在热液成矿中的意义[J]. 地球科学进展, 1997, 12(6):49-55. |
[34] | 张德会. 热液成矿作用地球化学[M]. 北京: 地质出版社, 2020. |
[35] |
TAYLOR H P. Water/rock interactions and the origin of H2O in granitic batholiths[J]. Journal of the Geological Society, 1977, 133:509-558.
DOI URL |
[36] | 朱赖民, 张国伟, 李犇, 等. 陕西省马鞍桥金矿床地质特征、同位素地球化学与矿床成因[J]. 岩石学报, 2009, 25(2):431-443. |
[37] | 李伟, 谢桂青, 张志远, 等. 流体包裹体和C-H-O同位素对湘中古台山金矿床成因制约[J]. 岩石学报, 2016, 32(11):3489-3506. |
[38] | TAYLOR B E. Magmatic volatiles; isotopic variation of C, H, and S[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1):185-225. |
[39] |
OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5):551-578.
DOI URL |
[40] | HOEFS J. Stable Isotope Geochemistry[M]. 8th ed. Cham: Springer International Publishing, 2018. |
[41] |
TAYLOR H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69(6):843-883.
DOI URL |
[42] | 刘建明, 刘家军, 顾雪祥. 沉积盆地中的流体活动及其成矿作用[J]. 岩石矿物学杂志, 1997, 16(4):54-65. |
[43] | 孙景贵, 胡受奚, 沈昆, 等. 胶东金矿区矿田体系中基性-中酸性脉岩的碳、氧同位素地球化学研究[J]. 岩石矿物学杂志, 2001, 20(1):47-56. |
[44] | OHMOTO H. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(2):491-559. |
[45] | 尹观, 倪师军. 同位素地球化学[M]. 北京: 地质出版社, 2009. |
[46] | 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000. |
[47] | 邢波, 郑伟, 欧阳志侠, 等. 粤西庙山铜多金属矿床硫化物原位微区分析及S同位素对矿床成因的制约[J]. 地质学报, 2016, 90(5):971-986. |
[48] |
CHAUSSIDON M, LORAND J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54(10):2835-2846.
DOI URL |
[49] | ROLLISON H. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Essex: Longman Scientific and Technical Press, 1993: 306-308. |
[50] | OHMOTO H, GOLDHABER M B. Sulfur and carbon isotopes[M]//BARNES H L. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, 1997: 517-611. |
[51] |
CLAYPOOL G E, HOLSER W T, KAPLAN I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J]. Chemical Geology, 1980, 28:199-260.
DOI URL |
[1] | WANG Yi, LI Lixing, LI Houmin, LI Xiaosai, MA Lanjing, XING Yuliang, SUN Xinyu, DAI Yang, WANG Xiaohui. Geochronology and Genesis of the Zhaobinggou Fe-P Deposit, Northern Hebei, China [J]. Geoscience, 2024, 38(01): 46-55. |
[2] | HU Shengping, HAN Shanchu, ZHANG Hongqiu, ZHANG Yong, PAN Jiayong, ZHONG Fujun, LU Jianyan, LI Weixin. Trace Element Geochemistry and Its Metallogenic Implications of the Pyrite from the Xiwan Pb-Zn Deposit in Luzong Basin, Anhui [J]. Geoscience, 2024, 38(01): 183-197. |
[3] | WANG Qibo, ZHANG Shouting, TANG Li, LI Junjun, SHENG Yuanming. Genesis of Yangshan Fluorite Deposit in Western Henan Province: Fluorite REE Composition and Fluid Inclusion Thermomechanical Constraints [J]. Geoscience, 2023, 37(06): 1524-1537. |
[4] | DU Jun, LIU Hongwei, CHANG Honglun. Experimental Study on Fluid Inclusion Synthesis in Plagioclase [J]. Geoscience, 2023, 37(06): 1634-1643. |
[5] | XIA Jinsheng, SUN Li, ZHANG Peng, CHEN Changkuo, WANG Junzhu, SI Jiangfu. Geochemical Characteristics and Genesis of Pinghe Crystalline Graphite Deposit in Sichuan Province [J]. Geoscience, 2022, 36(06): 1486-1496. |
[6] | GAO Yinhu, YIN Gang, GONG Zeqiang, GUO Mingchun. Geological Characteristics and Genesis of the Xiangtanzi Gold Deposit in Liangdang County, Gansu Province [J]. Geoscience, 2021, 35(06): 1523-1535. |
[7] | GUO Yuncheng, LIU Jiajun, YIN Chao, GUO Mengxu. Geological Characteristics and Ore-forming Fluids of the Dahu Au-Mo Deposit in Xiaoqinling Gold Field [J]. Geoscience, 2021, 35(06): 1536-1550. |
[8] | CHANG Ming, LIU Jiajun, YANG Yongchun, ZHAI Degao, ZHOU Shuming, WANG Jianping. Fluid Inclusion Study of the Lu'erba Au Deposit in Gansu Province: Discussion on Fluid Evolution and Metallogenic Mechanism [J]. Geoscience, 2021, 35(06): 1576-1586. |
[9] | LIU Tianhang, GAO Yongbao, WEI Liyong, ZHANG Zhen, TANG Weidong, JIA Bin. Geological Characteristics and S-Pb Isotope Geochemistry of the Sirengou Pb-Zn Deposit in Xunyang, Shaanxi Province [J]. Geoscience, 2021, 35(06): 1597-1607. |
[10] | DING Kun, WANG Ruiting, LIU Kai, WANG Zhihui, SHEN Ximao. Pyrite Trace Element, Hydrogen, Oxygen, and Sulfur Isotope Geochemistry of the Xiajiadian Gold Deposit in Zhashui-Shanyang Orefield, South Qinling Orogen, and Its Metallogenic Constraints [J]. Geoscience, 2021, 35(06): 1622-1632. |
[11] | SUN Kang, CAO Yi, ZHANG Wei, ZHAO Yang. Geology and Fluid Inclusions of the Tongkuangli Molybdenum Polymetallic Deposit in Qingyang Area, Anhui Province, China [J]. Geoscience, 2021, 35(05): 1371-1379. |
[12] | HAO Peng, YANG Jilei, ZHANG Xudong, ZANG Chunyan, CHEN Rongtao, WANG Bo, SHUI Leilei, WANG Sihui, CAI Tao. Mechanism of Differential Oil-gas Distribution in the Steep-slope Zone (Northwestern Margin of Bozhong Sag): Evidence from Reconstruction of Hydrocarbon Accumulation [J]. Geoscience, 2021, 35(04): 1124-1135. |
[13] | ZENG Ruiyin, JIANG Hua, ZHU Xinyou, ZHANG Xiong, XIAO Jian, LÜ Xiaoqiang, HU Chuan, YANG Xiaokun, LI Jinlin, ZHEN Zheguang. Fluid Evolution and Mineralization Mechanism of Dongchuan Copper Deposit in Yunnan Province [J]. Geoscience, 2021, 35(01): 244-257. |
[14] | YUAN Weiheng, GU Xuexiang, ZHANG Yongmei, DU Zezhong, YU Xiaofei, SUN Hairui, LÜ Xin. Properties of Ore-forming Fluids and Genesis of the Xiaoxigong Gold Deposit in the Beishan Region, Gansu Province [J]. Geoscience, 2020, 34(03): 554-568. |
[15] | FANG Yan, HE Mouchun, DING Zhenju, XU Yiran, WEI Lianxi. Ore-forming Fluid Characteristics and Genesis of the Wudaogou Gold Deposit in Dongning County, Heilongjiang Province [J]. Geoscience, 2020, 34(02): 254-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||