Geoscience ›› 2021, Vol. 35 ›› Issue (05): 1311-1322.DOI: 10.19657/j.geoscience.1000-8527.2021.077
Previous Articles Next Articles
XU Keke1,2(), YANG Zhenjing1(
), NING Kai1, HAN Qiangqiang3, BI Zhiwei1, ZHAO Nannan4
Received:
2021-04-20
Revised:
2021-06-03
Online:
2021-10-10
Published:
2021-11-04
Contact:
YANG Zhenjing
CLC Number:
XU Keke, YANG Zhenjing, NING Kai, HAN Qiangqiang, BI Zhiwei, ZHAO Nannan. MIS6-MIS5 Climate Change of Yinchuan Basin Based on End-member Method[J]. Geoscience, 2021, 35(05): 1311-1322.
Fig.2 Lithology and age-depth relationship of borehole LS01(the line showing the result of linear interpolation, and the virtual shadow showing the confidence interval)
样号 | α系数 | 深度/m | U/10-6 | Th/10-6 | K/% | 含水率/% | 剂量率/(Gy/ka) | 等效剂量/Gy | 年龄/ka |
---|---|---|---|---|---|---|---|---|---|
OSL-1 | 0.04±0.02 | 15.3 | 2.71 | 14.38 | 2.17 | 25±5 | 3.78±0.21 | 300.64±11.84 | 79.58±5.42 |
OSL-2 | 0.04±0.02 | 26.5 | 1.95 | 11.24 | 1.84 | 29±5 | 2.91±0.16 | 296.12±11.32 | 101.72±6.67 |
OSL-3 | 0.04±0.02 | 41.7 | 1.90 | 11.33 | 1.72 | 28±5 | 2.35±0.07 | 262.22±2.11 | 111.58±3.49 |
OSL-4 | 0.04±0.02 | 60.2 | 2.55 | 10.00 | 1.75 | 20±5 | 2.61±0.09 | 325.65±1.61 | 124.91±4.17 |
OSL-5 | 0.04±0.02 | 75.4 | 1.83 | 7.71 | 1.74 | 29±5 | 2.12±0.07 | 301.41±1.32 | 142.17±4.60 |
OSL-6 | 0.04±0.02 | 102.8 | 2.17 | 4.92 | 2.13 | 20±5 | 2.93±0.15 | 445.38±43.82 | 151.85±16.81 |
Table 1 OSL ages and dating parameters of borehole LS01
样号 | α系数 | 深度/m | U/10-6 | Th/10-6 | K/% | 含水率/% | 剂量率/(Gy/ka) | 等效剂量/Gy | 年龄/ka |
---|---|---|---|---|---|---|---|---|---|
OSL-1 | 0.04±0.02 | 15.3 | 2.71 | 14.38 | 2.17 | 25±5 | 3.78±0.21 | 300.64±11.84 | 79.58±5.42 |
OSL-2 | 0.04±0.02 | 26.5 | 1.95 | 11.24 | 1.84 | 29±5 | 2.91±0.16 | 296.12±11.32 | 101.72±6.67 |
OSL-3 | 0.04±0.02 | 41.7 | 1.90 | 11.33 | 1.72 | 28±5 | 2.35±0.07 | 262.22±2.11 | 111.58±3.49 |
OSL-4 | 0.04±0.02 | 60.2 | 2.55 | 10.00 | 1.75 | 20±5 | 2.61±0.09 | 325.65±1.61 | 124.91±4.17 |
OSL-5 | 0.04±0.02 | 75.4 | 1.83 | 7.71 | 1.74 | 29±5 | 2.12±0.07 | 301.41±1.32 | 142.17±4.60 |
OSL-6 | 0.04±0.02 | 102.8 | 2.17 | 4.92 | 2.13 | 20±5 | 2.93±0.15 | 445.38±43.82 | 151.85±16.81 |
[1] | 赵红梅, 刘林敬, 赵华, 等. 滹沱河古河道剖面粒度参数特征及沉积环境[J]. 现代地质, 2016, 30(2):485-492. |
[2] | 殷志强, 秦小光, 吴金水, 等. 湖泊沉积物粒度多组分特征及其成因机制研究[J]. 第四纪研究, 2008, 28(2):161-169. |
[3] | 孙东怀, 安芷生, 苏瑞侠, 等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展, 2001, 11(3):47-54. |
[4] | MCMANUS J. Grain size determination and interpretation[M]// TRUCKER M. Techniques in Sedimentology. Oxford: Backwell, 1988:63-85. |
[5] | 陈洪云, 孙有斌. 黄土高原风尘沉积的物质来源研究:回顾与展望[J]. 第四纪研究, 2008, 28(5):892-900. |
[6] | 周建超, 吴敬禄, 曾海鳌. 新疆乌伦古湖沉积物粒度特征揭示的环境信息[J]. 沉积学报, 2017, 35(6):1158-1165. |
[7] |
SUN D H, BLOEMENDALC J, READ D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3):263-277.
DOI URL |
[8] | 陈国成, 郑洪波, 李建如, 等. 南海西部陆源沉积粒度组成的控制动力及其反映的东亚季风演化[J]. 科学通报, 2007, 52(23):2768-2776. |
[9] | 商圣潭, 钟巍, 魏志强, 等. 南岭东部定南大湖沉积物粒度敏感组分及末次冰消期环境记录[J]. 沉积学报, 2018, 36(2):310-318. |
[10] |
孔霄, 来风兵, 陈蜀江, 等. 别里库姆沙漠胡杨回涡沙丘表层沉积物粒度特征[J]. 现代地质, 2021, 35(3):657-664.DOI: 10.19657/j.geoscience.1000-8527.2020.057.
DOI |
[11] | 何继山, 梁杏, 李静, 等. 天津滨海平原区深孔沉积物环境敏感粒度提取及其意义[J]. 地球科学, 2015, 40(7):1215-1225. |
[12] |
WELTJE G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549.
DOI URL |
[13] | 张威, 成然, 马瑞丰, 等. 辽南地区金州西团瓢湖沼相沉积物粒度化学特征及环境意义[J]. 海洋地质与第四纪地质, 2020, 40(3):195-207. |
[14] | 王兆夺, 黄春长, 周亚利, 等. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3):293-304. |
[15] | 程良清, 宋友桂, 李越, 等. 粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用[J]. 沉积学报, 2018, 36(6):1148-1156. |
[16] | 牟雪松, 马俊, 王永达, 等. 粒度分布的端元建模分析及检验:以“吉兰泰—河套”盆地西部DK-12钻孔晚第四纪沉积物为例[J]. 古地理学报, 2018, 20(3):489-500. |
[17] | 童国榜. 银川盆地第四纪地层学研究[J]. 地层学杂志, 1998, 22(1):42-51. |
[18] | 杨振京, 郑宏瑞, 童国榜, 等. 银川盆地中更新世以来的孢粉植物群古气候旋回探讨[J]. 长春科技大学学报, 2001, 31(3):213-216. |
[19] | 刘平贵, 范淑贤, 李雪菊. 银川盆地第四纪地球化学元素特征及沉积环境[J]. 地质力学学报, 2000, 6(4):43-50,94. |
[20] | 孙爱芝, 韩晓丽, 强杨, 等. 海原剖面12.5~7.2 kaBP期间化学元素与粒度组成的古环境意义[J]. 干旱区资源与环境, 2011, 25(7):146-149. |
[21] | 林畅松. 贺兰拗拉槽盆地充填演化分析[M]. 北京: 地质出版社, 1995:1-143. |
[22] |
周特先. 宁夏构造地貌格局及其形成与发展[J]. 地理学报, 1985, 40(3):215-224.
DOI |
[23] | 熊毅, 席承藩. 华北平原第四纪沉积物的性质及其演变[J]. 科学通报, 1958, 1(6):61-69. |
[24] | 吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003:1-448. |
[25] |
PATERSON G, HESLOP D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16:4494-4506.
DOI URL |
[26] |
BLAAUW M. Methods and code for “classical” age-modeling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5):512-518.
DOI URL |
[27] | 鹿化煜, 安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学:地球科学, 1998, 28(3):87-92. |
[28] | 肖尚斌, 李安春. 东海内陆架泥区沉积物的环境敏感粒度组分[J]. 沉积学报, 2005, 23(1):122-129. |
[29] | 葛本伟, 刘安娜. 天山北麓黄土沉积的光释光年代学及环境敏感粒度组分研究[J]. 干旱区资源与环境, 2017, 31(2):110-116. |
[30] |
DIETZE E, MAUSSION F, AHLBORN M, et al. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments[J]. Climate of the Past, 2014, 10(1):91-106.
DOI URL |
[31] |
LI Z J, SUN D H, CHEN F H, et al. Chronology and paleoen-vironmental records of a drill core in the central Tengger Desert of China[J]. Quaternary Science Reviews, 2014, 85(1):85-98.
DOI URL |
[32] | 成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1978:1-147. |
[33] | 邢成起, 尹功明, 丁国瑜, 等. 黄河黑山峡阶地的砾石Ca膜厚度与粗碎屑沉积地貌面形成年代的测定[J]. 科学通报, 2002, 47(3):167-172. |
[34] | 蒋复初, 傅建利, 王书兵, 等. 关于黄河贯通三门峡的时代[J]. 地质力学学报, 2005, 11(4):293-301. |
[35] | 曹继秀, 张宇田. 塬堡黄土剖面15万年以来磁化率气候记录及黄土磁化率时空特征[J]. 兰州大学学报(自然科学版), 1997, 33(1):124-132. |
[36] |
ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431:147-151.
DOI URL |
[37] | 杨星辰, 叶培盛, 蔡茂堂, 等. 150ka以来内蒙古河套古大湖沉积物粒度记录的湖泊水位变化[J]. 地质通报, 2017, 36(6):1043-1050. |
[38] | 王兆荣, 胡秀章, 周德昌, 等. 北京周口店石笋稳定同位素古气候探讨[J]. 科技通报, 1997, 13(4):21-25. |
[39] | 温仰磊. 天山北麓黄土记录的末次间冰期以来气候变化初探[D]. 兰州:兰州大学, 2015:1-49. |
[40] | 杜恕环, 赵欣楠, 李保生, 等. 萨拉乌苏河流域MGS5层段CaCO3记录的末次间冰期东亚季风与沙漠环境演化[J]. 自然科学进展, 2009, 19(11):1187-1193. |
[41] | 刘宇飞, 李保生, 杨艺, 等. 末次间冰期我国半干旱盆地Rb、Sr的迁移聚集规律与环境演变——以萨拉乌苏河流域米浪沟湾剖面研究结果为例[J]. 中国沙漠, 2006, 26(3):341-344. |
[42] | 赵希涛, 朱大岗, 严富华, 等. 西藏纳木错末次间冰期以来的气候变迁与湖面变化[J]. 第四纪研究, 2003, 23(1):41-52. |
[43] |
WANG Y J, HAI C, EDWARDS R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451:1090-1093.
DOI URL |
[44] | 管清玉, 潘保田, 高红山, 等. 高分辨率黄土剖面记录的末次间冰期东亚季风的不稳定性特征[J]. 中国科学:地球科学, 2007, 37(1):86-93. |
[45] |
CHENG H, SPTL C, BREITENBACH S F M, et al. Climate variations of Central Asia on orbital to millennial timescales[J]. Scientific Reports, 2016, 6:36975.
DOI URL |
[46] |
BERGER A, LOUTRELOUTRE M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317.
DOI URL |
[47] |
PETIT J R, JOUZEL J, RAYNAUD D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core[J]. Nature, 1999, 399:429-436.
DOI URL |
[48] | 李新周, 刘晓东. 最近15万年来东亚古气候变化对日射响应的瞬变模拟[J]. 地球环境学报, 2012, 3(2):801-809. |
[49] |
BERGER A. Long-term variations of caloric insolation resulting from the Earth’s orbital elements[J]. Quaternary Research, 1978, 9(2):139-167.
DOI URL |
[1] | AN Guoying, GUO Zhaocheng, YE Pei. Climatic Changes and Impacts on Water Quality of Erhai Lake in Dali Area, Yunnan Province over the Period from 1989 to 2019 [J]. Geoscience, 2022, 36(02): 406-417. |
[2] | WANG Xianglian, HUANG Ting, XIAO He, WU Daishe, ZHANG Xiaolong, CHENG Shenggao, MAO Xumei. Magnetic Susceptibility of Hani Peat Sediments in Northeast China and Its Paleoclimate Significance [J]. Geoscience, 2021, 35(05): 1323-1331. |
[3] | LU Jingfang, ZHANG Kexin, SONG Bowen, XU Yadong, ZHANG Jianyu, HUANG Wei, ZHANG Daolai. Paleogene-Neogene Pollen and Climate Change in Dahonggou Region of Qaidam Basin [J]. Geoscience, 2020, 34(04): 732-744. |
[4] | DING Yingying, ZHANG Xujiao, HE Zexin, HU Daogong, WANG Chaoqun. River Incision Behavior Response to Climate Change During the Last Glacial Period [J]. Geoscience, 2017, 31(02): 394-405. |
[5] | WANG Jian-yong,ZHANG Xu-jiao,HE Ze-xin,ZHAO Qiu-chen,HE Xiang-li,SHENG Yu-ying. Discovery of Ice-wedge Casts in the Northern Margin of Loess Plateau and Their Implications [J]. Geoscience, 2015, 29(4): 816-824. |
[6] | WANG Jin-cui, ZHANG Ying, WEN Ji-li, SUN Ji-chao. Temporal and Spatial Changing Features of Climate in North China Plain [J]. Geoscience, 2015, 29(2): 299-306. |
[7] | GAO Yu, YANG Zhong-Fang, ZHANG Ling-Yan, TU Chao. Investigation on the Soil Environmental Pollution Degree of Yinchuan Basin Using the Geochemical Survey Data [J]. Geoscience, 2012, 26(5): 972-974. |
[8] | DIAO Dun-Xiang, XU Shen-E, LIU Zhi-Rong. Grain Size Characteristics and Deposit Environment of Strata in Hujiagang River Terrace in Yingxian, Shanxi Province [J]. Geoscience, 2012, 26(4): 716-722. |
[9] | CHEN Xi-1, 2 , WANG Cheng-Shan-1, 2 , HUANG Yong-Jian-1, 2. Progress in the Study of Cretaceous Rapid Climate Change— Evidence of Glaciation in a Greenhouse World [J]. Geoscience, 2011, 25(3): 409-418. |
[10] | ZHAO Hai-bin,YIN Zhi-gang,WAN Xiao-qiao,YU Qing-wen,NIU Yan-hong. Influence of Late Cretaceous Climate Change to Extinction of Dinosaurs in Jiayin Area of Heilongjiang, Analyzed by Spore and Pollen [J]. Geoscience, 2006, 20(2): 216-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||