Geoscience ›› 2021, Vol. 35 ›› Issue (01): 220-233.DOI: 10.19657/j.geoscience.1000-8527.2021.010
Previous Articles Next Articles
ZHAO Yuanfang1,2(), GONG Wangbin1,2(
), JIANG Wan1,2, CHEN Longyao1,2, QIU Duwei1,2
Received:
2020-10-09
Revised:
2020-11-09
Online:
2021-02-12
Published:
2021-03-12
Contact:
GONG Wangbin,CHEN Longyao
CLC Number:
ZHAO Yuanfang, GONG Wangbin, JIANG Wan, CHEN Longyao, QIU Duwei. Multi-stage Characteristics and Tectonic Significance of the Jiali Fault in Guxiang-Tongmai Section, South Tibet[J]. Geoscience, 2021, 35(01): 220-233.
Fig.1 Geotectonic location map(a) [28] and geological map of the study area(b)(after the“geological map sheets of Tongmai and Guxiang, 1:50,000 thematic regional geological survey along Sichuan-Tibet railway line”)
点号 | 坐标 | 断面产状 | 擦痕产状 | 断层规模 | 破碎带特征 |
---|---|---|---|---|---|
GT15 | E95°23'12.63″ N29°56'41.3″ | 倾向30°~40° 倾角66°~88° | 侧伏向120°~128° 侧伏角20°~25° 少数达45° | 长3~5 m 宽1~2 m | 片麻岩中形成密集节理带,碎裂岩(片麻岩);发育断层镜面;具逆断层性质 |
GT25 | E95°19'50.41″ N29°59'33.27″ | 倾向190°~200° 倾角65°~83° | 侧伏向100°~110° 侧伏角3°~5° | 长5~6 m 宽1.5~2 m | 大理岩发育小规模密集节理;发育定向方解石晶体 |
GT50 | E95°12'2.16″ N30°04'13.0″ | 倾向210°~230° 倾角80°~88° | 侧伏向87°~95° 侧伏角5°~15° | 长3~5 m 宽4~5 m | 形成密集节理带,发育碎裂岩(变砂岩),构造透镜体;发育断层镜面 |
GT55 | E95°10'47.96″ N36°04'1.69″ | 倾向353°~10° 倾角75°~88° | 侧伏向85°~100° 侧伏角10°~14° | 长5~10 m 宽3~5 m | 形成劈理带、密集节理带、碎裂岩(大理岩及变砂岩)、构造透镜体;发育多组断层面 |
GT56 | E95°9'39.09″ N36°03'54.38″ | 倾向355°~40° 倾角60°~75° | 侧伏向85°~128° 侧伏角30°~50° | 长5~8 m 宽1~2 m | 发育密集节理,碎裂岩(片麻岩)及构造透镜体;具逆断层性质 |
GT58 | E95°8'56.16″ N36°04'7.75″ | 倾向195°~210° 倾角82°~85° | 侧伏向200°~210° 侧伏角24°~35° | 长3~4 m 宽0.5 m | 片麻岩发育节理,无明显破碎带;具逆断层性质 |
GT80 | E95°3'39.07″ N36°06'58.74″ | 倾向8°~20° 倾角80°~88° | 侧伏向280°~290° 侧伏角38°~57° | 长3~5 m 宽0.6~0.8 m | 大理岩发育较密集节理,无明显破碎带;发育定向方解石晶体 |
GT91 | E95°3'32.11″ N30°05'31.89″ | 倾向5°~18° 倾角69°~76° | 侧伏向275~280° 侧伏角46°~56° | 长1~2 m 宽0.8 m | 发育小规模较密集节理; 兼具正断层性质 |
GT94 | E95°3'17.34″ N30°05'2.69″ | 倾向190°~200° 倾角86°~89° | 侧伏向290°~300° 侧伏角37°~41° | 长2~3 m 宽0.5 m | 发育较密集节理,见小型构造透镜体 |
Table 1 Structural points and features of sinistral strike-slip faults
点号 | 坐标 | 断面产状 | 擦痕产状 | 断层规模 | 破碎带特征 |
---|---|---|---|---|---|
GT15 | E95°23'12.63″ N29°56'41.3″ | 倾向30°~40° 倾角66°~88° | 侧伏向120°~128° 侧伏角20°~25° 少数达45° | 长3~5 m 宽1~2 m | 片麻岩中形成密集节理带,碎裂岩(片麻岩);发育断层镜面;具逆断层性质 |
GT25 | E95°19'50.41″ N29°59'33.27″ | 倾向190°~200° 倾角65°~83° | 侧伏向100°~110° 侧伏角3°~5° | 长5~6 m 宽1.5~2 m | 大理岩发育小规模密集节理;发育定向方解石晶体 |
GT50 | E95°12'2.16″ N30°04'13.0″ | 倾向210°~230° 倾角80°~88° | 侧伏向87°~95° 侧伏角5°~15° | 长3~5 m 宽4~5 m | 形成密集节理带,发育碎裂岩(变砂岩),构造透镜体;发育断层镜面 |
GT55 | E95°10'47.96″ N36°04'1.69″ | 倾向353°~10° 倾角75°~88° | 侧伏向85°~100° 侧伏角10°~14° | 长5~10 m 宽3~5 m | 形成劈理带、密集节理带、碎裂岩(大理岩及变砂岩)、构造透镜体;发育多组断层面 |
GT56 | E95°9'39.09″ N36°03'54.38″ | 倾向355°~40° 倾角60°~75° | 侧伏向85°~128° 侧伏角30°~50° | 长5~8 m 宽1~2 m | 发育密集节理,碎裂岩(片麻岩)及构造透镜体;具逆断层性质 |
GT58 | E95°8'56.16″ N36°04'7.75″ | 倾向195°~210° 倾角82°~85° | 侧伏向200°~210° 侧伏角24°~35° | 长3~4 m 宽0.5 m | 片麻岩发育节理,无明显破碎带;具逆断层性质 |
GT80 | E95°3'39.07″ N36°06'58.74″ | 倾向8°~20° 倾角80°~88° | 侧伏向280°~290° 侧伏角38°~57° | 长3~5 m 宽0.6~0.8 m | 大理岩发育较密集节理,无明显破碎带;发育定向方解石晶体 |
GT91 | E95°3'32.11″ N30°05'31.89″ | 倾向5°~18° 倾角69°~76° | 侧伏向275~280° 侧伏角46°~56° | 长1~2 m 宽0.8 m | 发育小规模较密集节理; 兼具正断层性质 |
GT94 | E95°3'17.34″ N30°05'2.69″ | 倾向190°~200° 倾角86°~89° | 侧伏向290°~300° 侧伏角37°~41° | 长2~3 m 宽0.5 m | 发育较密集节理,见小型构造透镜体 |
Fig.3 Lower hemispheric stereographic projection of the sinistral strike-slip fault plane and scratch data(solid arrow denotes the direction of compression; 1,2 and 3 are maximum, intermediate and minimum principal stress axes, respectively)
构造点 | 坐标 | 断面产状 | 擦痕产状 | 断层规模 | 破碎带特征 |
---|---|---|---|---|---|
GT14 | E95°23'24.38″ N29°56'31.39″ | 倾向215°~230° 倾角46°~50° | 侧伏向220°~280° 侧伏角40°~48° | 长2~3 m 宽0.3~0.5 m | 发育小规模密集节理;发育定向 石英晶体 |
GT16 | E95°23'10.65″ N29°56'56.31″ | 倾向210°~230° 倾角46°~54° | 侧伏向210°~227° 侧伏角42°~50° | 长15~20 m 宽10~12 m | 发育断层泥、碎裂岩(片麻岩); 断面规模较大 |
GT17 | E95°23'6.84″ N29°57'13.73″ | 倾向205°~220° 倾角60°~70° | 侧伏向208°~220° 侧伏角53°~58° | 长4~5 m 宽约0.5 m | 发育小规模密集节理;发育定向 石英晶体 |
GT40 | E95°14'0.02″ N30°02'15.76″ | 倾向31°~40° 倾角74°~78° | 侧伏向35° 侧伏角75° | 长约3 m 宽约0.3 m | 形成较密集节理带;发育定向 方解石晶体 |
GT47 | E95°12'23.69″ N30°03'24.19″ | 倾向190°~200° 倾角78°~82° | 侧伏向192°~200° 侧伏角57°~75° | 长2~3 m 宽约0.5 m | 形成较密集节理;发育定向 方解石晶体 |
Table 2 Structural points and features of normal faults
构造点 | 坐标 | 断面产状 | 擦痕产状 | 断层规模 | 破碎带特征 |
---|---|---|---|---|---|
GT14 | E95°23'24.38″ N29°56'31.39″ | 倾向215°~230° 倾角46°~50° | 侧伏向220°~280° 侧伏角40°~48° | 长2~3 m 宽0.3~0.5 m | 发育小规模密集节理;发育定向 石英晶体 |
GT16 | E95°23'10.65″ N29°56'56.31″ | 倾向210°~230° 倾角46°~54° | 侧伏向210°~227° 侧伏角42°~50° | 长15~20 m 宽10~12 m | 发育断层泥、碎裂岩(片麻岩); 断面规模较大 |
GT17 | E95°23'6.84″ N29°57'13.73″ | 倾向205°~220° 倾角60°~70° | 侧伏向208°~220° 侧伏角53°~58° | 长4~5 m 宽约0.5 m | 发育小规模密集节理;发育定向 石英晶体 |
GT40 | E95°14'0.02″ N30°02'15.76″ | 倾向31°~40° 倾角74°~78° | 侧伏向35° 侧伏角75° | 长约3 m 宽约0.3 m | 形成较密集节理带;发育定向 方解石晶体 |
GT47 | E95°12'23.69″ N30°03'24.19″ | 倾向190°~200° 倾角78°~82° | 侧伏向192°~200° 侧伏角57°~75° | 长2~3 m 宽约0.5 m | 形成较密集节理;发育定向 方解石晶体 |
Fig.5 Lower hemispheric stereographic projection of the normal fault plane and scratch data(hollow arrow denotes the direction of extension; 1,2 and 3 are maximum, intermediate and minimum principal stress axes, respectively)
点号 | 坐标 | 断面产状 | 擦痕产状 | 断层规模 | 破碎带特征 |
---|---|---|---|---|---|
GT17 | E95°23'6.84″ N29°57'13.73″ | 倾向25°~45° 倾角60°~70° | 侧伏向110°~138° 侧伏角4°~11° | 长2~3 m 宽0.5~1 m | 片麻岩中形成密集节理带 |
GT26 | E95°19'41.89″ N29°59'28.56″ | 倾向195°~220° 倾角75°~88° | 侧伏向110°~138° 侧伏角3°~15° | 长4~5 m 宽2~3 m | 发育断层泥、碎裂岩(片麻岩);发育定向石英晶体 |
GT29 | E95°17'51.91″ N30°00'12.11″ | 倾向5°~20° 倾角75°~86° | 侧伏向87°~95° 侧伏角8°~18° | 长5~8 m 宽3~4 m | 形成密集节理带,发育碎裂岩(片麻岩);发育定向石英晶体 |
GT47 | E95°12'23.69″ N30°03'24.19″ | 倾向182°~220° 倾角80°~88° | 侧伏向290°~305° 侧伏角8°~15° | 长8~10 m 宽3~4 m | 形成较密集节理带,发育碎裂岩(大理岩);发育定向方解石晶体 |
GT52 | E95°11'18.01″ N30°03'55.41″ | 倾向350°~2° 倾角85°~88° | 侧伏向85°~92° 侧伏角2°~10° | 长4~5 m 宽0.5~1 m | 发育密集节理,碎裂岩(石英片岩);发育定向石英晶体 |
GT62 | E95°06'51.62″ N30°04'47.17″ | 倾向35°~53° 倾角30°~57° | 侧伏向110°~125° 侧伏角2°~10° | 长15~20 m 宽5~8 m | 形成密集节理带,断层泥发育,碎裂岩(片麻岩);发育断层镜面;断面呈弧形 |
GT64 | E95°06'35.8″ N30°05'27.7″ | 倾向29°~35° 倾角64°~74° | 侧伏向125°~137° 侧伏角7°~9° | 长3~5 m 宽1~2 m | 发育密集节理,形成碎裂岩(片麻岩) |
GT90 | E95°03'33.65″ N30°05'36.44″ | 倾向29°~45° 倾角84°~88° | 侧伏向132°~145° 侧伏角11°~19° | 长8~10 m 宽4~5 m | 发育密集节理,碎裂岩(片麻岩、大理岩);发育多组断层面 |
Table 3 Structural points and features of dextral strike-slip faults
点号 | 坐标 | 断面产状 | 擦痕产状 | 断层规模 | 破碎带特征 |
---|---|---|---|---|---|
GT17 | E95°23'6.84″ N29°57'13.73″ | 倾向25°~45° 倾角60°~70° | 侧伏向110°~138° 侧伏角4°~11° | 长2~3 m 宽0.5~1 m | 片麻岩中形成密集节理带 |
GT26 | E95°19'41.89″ N29°59'28.56″ | 倾向195°~220° 倾角75°~88° | 侧伏向110°~138° 侧伏角3°~15° | 长4~5 m 宽2~3 m | 发育断层泥、碎裂岩(片麻岩);发育定向石英晶体 |
GT29 | E95°17'51.91″ N30°00'12.11″ | 倾向5°~20° 倾角75°~86° | 侧伏向87°~95° 侧伏角8°~18° | 长5~8 m 宽3~4 m | 形成密集节理带,发育碎裂岩(片麻岩);发育定向石英晶体 |
GT47 | E95°12'23.69″ N30°03'24.19″ | 倾向182°~220° 倾角80°~88° | 侧伏向290°~305° 侧伏角8°~15° | 长8~10 m 宽3~4 m | 形成较密集节理带,发育碎裂岩(大理岩);发育定向方解石晶体 |
GT52 | E95°11'18.01″ N30°03'55.41″ | 倾向350°~2° 倾角85°~88° | 侧伏向85°~92° 侧伏角2°~10° | 长4~5 m 宽0.5~1 m | 发育密集节理,碎裂岩(石英片岩);发育定向石英晶体 |
GT62 | E95°06'51.62″ N30°04'47.17″ | 倾向35°~53° 倾角30°~57° | 侧伏向110°~125° 侧伏角2°~10° | 长15~20 m 宽5~8 m | 形成密集节理带,断层泥发育,碎裂岩(片麻岩);发育断层镜面;断面呈弧形 |
GT64 | E95°06'35.8″ N30°05'27.7″ | 倾向29°~35° 倾角64°~74° | 侧伏向125°~137° 侧伏角7°~9° | 长3~5 m 宽1~2 m | 发育密集节理,形成碎裂岩(片麻岩) |
GT90 | E95°03'33.65″ N30°05'36.44″ | 倾向29°~45° 倾角84°~88° | 侧伏向132°~145° 侧伏角11°~19° | 长8~10 m 宽4~5 m | 发育密集节理,碎裂岩(片麻岩、大理岩);发育多组断层面 |
Fig.7 Lower hemispheric stereographic projection of the dextral strike-slip fault plane and scratch data (solid arrow denotes the direction of compression;1,2 and 3 are maximum, intermediate and minimum principal stress axes,respectively)
[1] | 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006,22(3):521-533. |
[2] | 耿全如, 彭智敏, 张璋. 喜马拉雅东构造结地区雅鲁藏布江蛇绿岩地质年代学研究[J]. 地质学报, 2011,85(7):1116-1127. |
[3] | 王保弟, 刘函, 王立全, 等. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化[J]. 地球科学, 2020,45(8):2764-2784. |
[4] | 丁林, 钟大赉. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J]. 地质科学, 2013,48(2):317-333. |
[5] | 王二七, BURCHFIEL B C, 季建清. 东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据[J]. 中国科学(D辑), 2001,31(1):1-9. |
[6] | 张进江, 季建清, 钟大赉, 等. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学( D辑), 2003,33(4):373-383. |
[7] | 宋键, 唐方头, 邓志辉, 等. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究[J]. 地球物理学报, 2011,54(6):1536-1548. |
[8] | 宋键, 唐方头, 邓志辉, 等. 青藏高原嘉黎断裂晚第四纪运动特征[J]. 北京大学学报(自然科学版), 2013,49(6):973-980. |
[9] | 胡波, 李泊洋, 张明, 等. 西藏门巴地区嘉黎断裂带变形特征及演化[J]. 世界地质, 2011,30(4):585-592. |
[10] | 张培震, 王琪, 马宗晋. 青藏高原现今构造变形特征与GPS速度场[J]. 地学前缘, 2002,9(2):442-450. |
[11] | ARMIJO R, TAPPONNIER P, HAN T. Late Cenozoic right-lateral strike-slip faulting across southern Tibet[J]. Journal of Geophysical Research, 1989,94(3):2787-2838. |
[12] | 任金卫, 沈军, 曹忠权, 等. 西藏东南部嘉黎断裂新知[J]. 地震地质, 2000,22(4):344-350. |
[13] | 谢超. 南迦巴瓦地区构造地貌及断裂活动特征[D]. 北京:中国地震局地质研究所, 2018: 108-121. |
[14] | WANG H, LI K, CHEN L, et al. Evidence for Holocene activity on the Jiali fault,an active block boundary in the Southeastern Tibetan Plateau[J]. Seismological Research Letters, 2020,91(3):1-5. |
[15] | 沈军, 汪一鹏, 任金卫, 等. 青藏高原东南部第四纪右旋剪切运动[J]. 新疆地质, 2003,21(1):120-125. |
[16] | DING L. Paleocene deep-water sediments and radiolarian faunas:Implications for evolution of Yarlung-Zangbo foreland basin,southern Tibet[J]. Science in China(Series D), 2003,46(1):84-96. |
[17] | DING L, KAPP P, WAN X Q. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision,south central Tibet[J]. Tectonics, 2005,24(3):TC3001. |
[18] | BURG J P, CHEN G M. Tectonics and structural zonation of southern Tibet,China[J]. Nature, 1984,311:219-223. |
[19] | YIN A, HARRISON T M, RYERSON F J, et al. Tertiary structure evolution of the Gangdese thrust system,southeastern Tibet[J]. Journal of Geophysical Research, 1994,99(9):18175-18201. |
[20] | BURCHFIEL B C, ZHI L C, HODGES K V, et al. The south Tibetan detachment system,Himalayan Orogen:Extension contemporaneous with and parallel to shortening in a collisional mountain belt[J]. Special Paper of the Geological Society of America, 1992,269:1-41. |
[21] | ENGLAND P, HOUSEMAN G. Extension during continental convergence,with application to the Tibetan Plateau[J]. Journal of Geophysical Research(Solid Earth), 1989,94(12):17561-17579. |
[22] | 陈海泓, 孙枢, 李继亮, 等. 华南板块的旋转运动[J]. 科学通报, 1992,37(8):724-726. |
[23] |
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997,276:788-790.
DOI URL PMID |
[24] | 朱伟元, 党运鸿, 张新友, 等. 中华人民共和国区域地质调查报告—通麦幅、波密幅(比例尺1:200000)[R]. 兰州:甘肃省地质矿产局区域地质调查队, 1995. |
[25] | 张泽明, 董昕, 耿官升, 等. 青藏高原拉萨地体北部的前寒武纪变质作用及构造意义[J]. 地质学报, 2010,84(4):449-456. |
[26] | 董昕, 张泽明, 田作林, 等. 拉萨地体东部早侏罗纪变质和深熔作用[J]. 地质学报, 2019,93(10):2446-2462. |
[27] | 高锐, 吴功建. 青藏高原亚东—格尔木地学断面地球物理综合解释模型与现今地球动力学过程[J]. 长春科技大学学报, 1995,35(3) : 241-249. |
[28] | 吴勇, 马绪宣, 张志平, 等. 青藏高原拉萨地块西部念青唐古拉岩群的地球化学特征及构造意义[J]. 地质学报, 2016,90(11):3081-3098. |
[29] | ANGELIER J. Tectonic analysis of fault slip data sets[J]. Journal of Geophysical Research, 1984,89:5835-5848. |
[30] | RATSCHBACHER L, HACKER B R, CALVERT A, et al. Tectonics of the Qinling(Central China):Tectonostraitigraphy, geochronology and deformation history[J]. Tectonophysics, 2003,366:1-53. |
[31] | TALMA A S, VOGEL J C. A simplified approach to calibrating 14C dates [J]. Radiocarbon, 1993,35(2):317-322. |
[32] | STUIVER M, BRAZIUNAS T F. Modeling atmospheric 14C influences ages of marine samples to 10 000 BC [J]. Radiocarbon, 1993,35(1):137-189. |
[33] | HEATON T J, BLACKWELL P G, BUCK C E. A Bayesian approach to the estimation of radiocarbon calibration curves:The INTCAL09 methodology[J]. Radiocarbon, 2009,51(4):1151-1164. |
[34] | REIMER P J BAILLIE M G L BARD E, et al. Intcal09 andmarine09 radiocarbonage calibrationcurves, 0~50,000 yearscal BP[J]. Radiocarbon, 2009,51(4):1111-1150. |
[35] | 许志琴, 蔡志慧, 张泽明, 等. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学[J]. 岩石学报, 2008,24(7):1463-1476. |
[36] | 黄庆华, 李永贤, 王砚庆. 青藏高原地区应力场的光弹性模拟分析及地震危险区的探讨[J]. 中国地质科学院地质力学研究所所刊, 1989(1):145-157. |
[37] | 张培震, 沈正康, 王敏, 等. 青藏高原及周边现今构造变形的运动学[J]. 地震地质, 2004,26(3):367-377. |
[38] | 侯强, 姚亚峰, 丁小军, 等. 青藏高原东南缘地幔对流与发震层应力场耦合关系分析[J]. 大地测量与地球动力学, 2019,39(9):890-895. |
[39] | 刘焰, WOLFGANG Siebe, 王猛. 东喜马拉雅构造结陆内变形过程的研究[J]. 地质学报, 2006,80(9):1274-1284. |
[40] | 许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016,43(1):1-42. |
[41] | 张鹏, 曲亚明, 郭长宝, 等. 西藏林芝地应力测量监测与尼泊尔Ms8.1级强震远场响应分析[J]. 现代地质, 2017,31(5):900-910. |
[42] | 邵翠茹. 雅鲁藏布大峡谷地区地震活动性研究[D]. 北京:中国地震局地球物理研究所, 2009: 53-66. |
[43] | 杨建亚, 白玲, 李国辉, 等. 东喜马拉雅构造结地区地震活动及其构造意义[J]. 国际地震动态, 2017(6):12-18. |
[44] | 吴珍汉, 叶培盛, 吴中海, 等. 青藏铁路沿线断裂活动的灾害效应[J]. 现代地质, 2003,17(1):1-7. |
[45] | 吴中海, 吴珍汉, 韩金良, 等. 青藏铁路风火山段晚第四纪断裂活动分析[J]. 现代地质, 2005,19(2):181-188. |
[46] | 郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质, 2017,31(5):877-889. |
[1] | LI Junlei, ZHANG Xujiao, WANG Yifan, ZHANG Xiangge, WANG Chongge, YUAN Xiaoning, LIU Xinlan, WANG Kaiya, RAO Haoshu, LIU Jiang, QIN Yuan. Route Planning and Ponder of Geoscience Study Travel in Hualong County, Qinghai Province [J]. Geoscience, 2023, 37(05): 1411-1422. |
[2] | LIU Xinlan, ZHANG Xujiao, LI Junlei, WANG Yifan, ZHANG Xiangge, YUAN Xiaoning, WANG Kaiya, WANG Chongge, LIU Jiang, HOU Engang. Characteristics and Scientific Values of “Canyon and Danxia” Landform in Hualong County, Qinghai Province [J]. Geoscience, 2023, 37(01): 233-244. |
[3] | HU Mengjun, JI Tianqi, ZHENG Dengyou, ZHUANG Jing, SUN Wenli, XU Aokang. Variation Characteristics of Chromatic Parameters of Eolian Sediments and Environmental Evolution on the Northeastern Tibetan Plateau Since 9.4 ka [J]. Geoscience, 2022, 36(02): 439-448. |
[4] | CHEN Jing, LI Dapeng, KANG Huan, GENG Jianzhen, ZHANG Jingjing. Provenances and Tectonic Significance of Detrital Zircons from the Triassic to Jurassic Sedimentary Rocks in the Diancangshan Metamorphic Massif, Western Yunnan Province [J]. Geoscience, 2021, 35(04): 883-913. |
[5] | LI Xue, GUO Changbao, YANG Zhihua, LIAO Wei, WU Ruian, JIN Jijun, HE Yuanxiao. Development Characteristics and Formation Mechanism of the Xiongba Giant Ancient Landslide in the Jinshajiang Tectonic Zone [J]. Geoscience, 2021, 35(01): 47-55. |
[6] | MENG Wen, GUO Changbao, MAO Bangyan, LU Haifeng, CHEN Qunce, XU Xueyuan. Tectonic Stress Field and Engineering Influence of China-Nepal Railway Corridor [J]. Geoscience, 2021, 35(01): 167-179. |
[7] | XIA Mengmeng, GAO Wanli, HU Daogong, ZHANG Yaoling, XU Jiusheng, JIA Liyun, WANG Chaoqun. Zircon U-Pb Ages for Volcanic Rocks in Bayan Har Group in the Northern Tibetan Plateau and Its Geological Significance [J]. Geoscience, 2019, 33(05): 957-969. |
[8] | SU Fangrui, GUO Changbao, ZHANG Xueke, SHEN Wei, LIU Xiaoyi, REN Sanshao. Remote Sensing Interpretation of Large Landslides Along Sichuan-Tibet Railway Based on Object-oriented Classification Method [J]. Geoscience, 2017, 31(05): 930-942. |
[9] | LI Langping, LAN Hengxing, GUO Changbao, ZHANG Yongshuang, LI Quanwen, WU Yuming. Geohazard Susceptibility Assessment Along the Sichuan-Tibet Railway and Its Adjacent Area Using an Improved Frequency Ratio Method [J]. Geoscience, 2017, 31(05): 911-929. |
[10] | KANG Huan1, LI Dapeng1,2, CHEN Yuelong1, LU Zhen1. Origin and Tectonic Implications of the Early Paleozoic HighSi Granite in the Eastern Baoshan Block, Yunnan [J]. Geoscience, 2016, 30(5): 1026-1037. |
[11] | . Landslide Susceptibility Evaluation Based on Weight-of-Evidence Modeling in the Xianshuihe Fault Zone, East Tibetan Plateau [J]. Geoscience, 2016, 30(3): 705-715. |
[12] | ZHAO Qiu-chen,ZHANG Xu-jiao,HE Ze-xin,HE Xiang-li,WANG Jian-yong,FU Lian-zhen,JI. Age of Upper Jinghe River Terraces at the Eastern Piedmont of Liupanshan and Its Significance for Neotectonic Movement [J]. Geoscience, 2014, 28(6): 1202-1212. |
[13] | YANG Deshou1, GONG Jianming2, HE Xingliang2, WANG Huidong1,. Discussion about the CO2 Origins of Wuli Permafrost Zone in QinghaiTibetan Plateau [J]. Geoscience, 2013, 27(6): 1392-1398. |
[14] | LI Xiaoyu1, GONG Jianming2, CHEN Xiaohui3, WANG Huidong1,. Source Rock Potential of Permian in Wuli Permafrost Zone in QinghaiTibetan Plateau [J]. Geoscience, 2013, 27(6): 1384-1391. |
[15] | XIE Wei, SUN Tian-He, HAN Feng, YUAN Guo-Li. Polybrominated Diphenyl Ethers (PBDEs) in Surface Soil from Central Tibetan Plateau, China: CongenersDistribution and Controlling Factors [J]. Geoscience, 2012, 26(5): 917-925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||