Geoscience ›› 2021, Vol. 35 ›› Issue (01): 114-125.DOI: 10.19657/j.geoscience.1000-8527.2021.018
Previous Articles Next Articles
XU Zhengxuan1,2(), MENG Wen3,4(
), GUO Changbao3,4, ZHANG Peng3,4, ZHANG Guangze1, SUN Mingqian3,4, CHEN Qunce3,4, CHEN Yu1
Received:
2020-10-01
Revised:
2020-11-05
Online:
2021-02-12
Published:
2021-03-12
Contact:
MENG Wen
CLC Number:
XU Zhengxuan, MENG Wen, GUO Changbao, ZHANG Peng, ZHANG Guangze, SUN Mingqian, CHEN Qunce, CHEN Yu. In-situ Stress Measurement and Its Application of a Deep-buried Tunnel in Zheduo Mountain, West Sichuan[J]. Geoscience, 2021, 35(01): 114-125.
Fig.3 Values of PS calculated by different methods ((a),data in the rectangle indicates that there is a large difference from the values obtained by other methods and do not participate in the calculation of the mean PS)and final values of PS(b)
序号 | 深度 /m | 主应力/MPa | KHv | Khv | Kav | KHh | SH方向 | ||
---|---|---|---|---|---|---|---|---|---|
SH | Sh | Sv | |||||||
1 | 196.5 | 9.32 | 5.92 | 5.34 | 1.74 | 1.11 | 1.43 | 1.58 | |
2 | 270.5 | 14.95 | 10.23 | 7.36 | 2.03 | 1.39 | 1.71 | 1.46 | |
3 | 330.0 | 20.85 | 12.45 | 8.98 | 2.32 | 1.39 | 1.85 | 1.68 | |
4 | 389.5 | 16.28 | 9.93 | 10.59 | 1.54 | 0.94 | 1.24 | 1.64 | |
5 | 458.5 | 12.92 | 9.74 | 12.47 | 1.04 | 0.78 | 0.91 | 1.33 | |
6 | 540.0 | 17.79 | 12.32 | 14.69 | 1.21 | 0.84 | 1.02 | 1.44 | |
7 | 560.5 | 11.88 | 9.08 | 15.25 | 0.78 | 0.60 | 0.69 | 1.31 | |
8 | 642.0 | 35.68 | 19.59 | 17.46 | 2.04 | 1.12 | 1.58 | 1.82 | N84°W |
Table 1 Results of hydraulic fracturing measurement
序号 | 深度 /m | 主应力/MPa | KHv | Khv | Kav | KHh | SH方向 | ||
---|---|---|---|---|---|---|---|---|---|
SH | Sh | Sv | |||||||
1 | 196.5 | 9.32 | 5.92 | 5.34 | 1.74 | 1.11 | 1.43 | 1.58 | |
2 | 270.5 | 14.95 | 10.23 | 7.36 | 2.03 | 1.39 | 1.71 | 1.46 | |
3 | 330.0 | 20.85 | 12.45 | 8.98 | 2.32 | 1.39 | 1.85 | 1.68 | |
4 | 389.5 | 16.28 | 9.93 | 10.59 | 1.54 | 0.94 | 1.24 | 1.64 | |
5 | 458.5 | 12.92 | 9.74 | 12.47 | 1.04 | 0.78 | 0.91 | 1.33 | |
6 | 540.0 | 17.79 | 12.32 | 14.69 | 1.21 | 0.84 | 1.02 | 1.44 | |
7 | 560.5 | 11.88 | 9.08 | 15.25 | 0.78 | 0.60 | 0.69 | 1.31 | |
8 | 642.0 | 35.68 | 19.59 | 17.46 | 2.04 | 1.12 | 1.58 | 1.82 | N84°W |
Fig.5 Distribution of principal stresses with depth (horizontal lines are error bars; regression equations of Chinese mainland are referred to Yang et al.[30])
Fig.6 Distribution of lateral pressure coefficients and the ratio of horizontal principal stresses with depth (fitting curves and regression equations are analyzed based on in-situ stress measurements in upper crust of Chinese mainland[32] )
Russenes判别法 | Hoek判别法 | 综合判别法 | |||
---|---|---|---|---|---|
结果 | 结果 | 结果 | |||
<0.20 | 无岩爆 | 0.34 | 少量片帮 | <0.30 | 无岩爆 |
0.20(含)~0.30 | 弱岩爆 | 0.42 | 严重片帮 | 0.30(含)~0.50 | 弱岩爆 |
0.30(含)~0.55 | 中岩爆 | 0.56 | 需重型支护 | 0.50(含)~0.70(含) | 中等岩爆 |
≥0.55 | 强岩爆 | 0.70 | 有严重岩爆 | >0.70 | 强烈岩爆 |
Table 2 Results of main discriminating methods for rockbrust[42,43]
Russenes判别法 | Hoek判别法 | 综合判别法 | |||
---|---|---|---|---|---|
结果 | 结果 | 结果 | |||
<0.20 | 无岩爆 | 0.34 | 少量片帮 | <0.30 | 无岩爆 |
0.20(含)~0.30 | 弱岩爆 | 0.42 | 严重片帮 | 0.30(含)~0.50 | 弱岩爆 |
0.30(含)~0.55 | 中岩爆 | 0.56 | 需重型支护 | 0.50(含)~0.70(含) | 中等岩爆 |
≥0.55 | 强岩爆 | 0.70 | 有严重岩爆 | >0.70 | 强烈岩爆 |
埋深/m | 最大水平 主应力方向 | 隧道 轴向 | 应力值/MPa | σn | 岩爆 | ||||
---|---|---|---|---|---|---|---|---|---|
SH | Sh | Sv | |||||||
0 500 | N84°W | N6°E0 | 28.21 | 16.05 | 13.60 | 28.21 | 71.02 | 0.99 | 强烈 |
N36°E | 25.17 | 61.91 | 0.86 | 强烈 | |||||
N66°E | 19.09 | 43.68 | 0.61 | 中等 | |||||
N96°E | 16.05 | 34.56 | 0.48 | 弱 | |||||
1 000 | N84°W | N6°E | 56.81 | 30.30 | 27.20 | 56.81 | 143.22 | 1.99 | 强烈 |
N36°E | 50.18 | 123.35 | 1.71 | 强烈 | |||||
N66°E | 36.93 | 083.59 | 1.16 | 强烈 | |||||
N96°E | 30.30 | 063.71 | 0.88 | 中等 |
Table 3 Rockbrust analysis of deep-buried tunnel under different buried depths and tunnel axial directions in Zheduo Mountain
埋深/m | 最大水平 主应力方向 | 隧道 轴向 | 应力值/MPa | σn | 岩爆 | ||||
---|---|---|---|---|---|---|---|---|---|
SH | Sh | Sv | |||||||
0 500 | N84°W | N6°E0 | 28.21 | 16.05 | 13.60 | 28.21 | 71.02 | 0.99 | 强烈 |
N36°E | 25.17 | 61.91 | 0.86 | 强烈 | |||||
N66°E | 19.09 | 43.68 | 0.61 | 中等 | |||||
N96°E | 16.05 | 34.56 | 0.48 | 弱 | |||||
1 000 | N84°W | N6°E | 56.81 | 30.30 | 27.20 | 56.81 | 143.22 | 1.99 | 强烈 |
N36°E | 50.18 | 123.35 | 1.71 | 强烈 | |||||
N66°E | 36.93 | 083.59 | 1.16 | 强烈 | |||||
N96°E | 30.30 | 063.71 | 0.88 | 中等 |
[1] | ZANG A, STEPHANSSON O. Stress Field of the Earth’s Crust[M]. London: Springer, 2010. |
[2] |
HAIMSON B C, CORNET F H. ISRM suggested methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40(7/8):1011-1020.
DOI URL |
[3] |
陈群策, 丰成君, 孟文, 等. “5.12”汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J]. 地球物理学报, 2012,55(12):3923-3932.
DOI URL |
[4] |
MENG W, CHEN Q C, ZHAO Z, et al. Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 2015,656:1-19.
DOI URL |
[5] |
MENG W, GUO C, ZHANG Y, et al. In situ stress measurements in the Lhasa Terrane, Tibetan Plateau, China[J]. Acta Geologica Sinica, 2016,90(6):2022-2035.
DOI URL |
[6] | 丰成君, 陈群策, 谭成轩, 等. 广东核电站地应力测量及其应用[J]. 岩土力学, 2013,34(6):1745-1752. |
[7] | 邱君, 吴满路, 范桃园, 等. 郯庐断裂带苏鲁界地应力积累特征及地震危险性研究[J]. 地质学报, 2019,93(12):3249-3258. |
[8] | 郭啟良, 王成虎, 丁立丰, 等. 川西某水电工程气垫调压室原地应力及相关岩体特性参数的测量与应用分析[J]. 岩石力学与工程学报, 2007,26(10):2070-2076. |
[9] | 徐则民, 黄润秋, 范柱国, 等. 长大隧道岩爆灾害研究进展[J]. 自然灾害学报, 2004,13(2):16-24. |
[10] | 谭以安. 岩爆形成机理研究[J]. 水文地质工程地质, 1989, ( 1):34-38,54. |
[11] | 朱艾斓, 徐锡伟, 周永胜, 等. 川西地区小震重新定位及其活动构造意义[J]. 地球物理学报, 2005,48(3):629-636. |
[12] |
WANG Y. Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constraints on active deformation[J]. Physics of the Earth and Planetary Interiors, 2001,126(3/4):121-146.
DOI URL |
[13] | 徐锡伟, 张培震, 闻学泽, 等. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质, 2005,27(3):446-461. |
[14] | 罗志立, 龙学明. 龙门山造山带崛起和川西陆前盆地沉降[J]. 四川地质学报, 1992,12(1):1-17. |
[15] | 许志琴, 李化启, 侯立炜, 等. 青藏高原东缘龙门—锦屏造山带的崛起:大型拆离断层和挤出机制[J]. 地质通报, 2007,26(10):1262-1276. |
[16] | 李海兵, 付小芳, VAN DERWOERD Jérôme, 等. 汶川地震(Ms8.0)地表破裂及其同震右旋斜向逆冲作用[J]. 地质学报, 2008,82(12):1623-1643. |
[17] |
ALLEN C R, LOU Z L, QIAN H, et al. Field study of a highly active fault zone: the Xianshuihe fault of Southwestern China[J]. Geological Society of America Bulletin, 1991,103(9):1178-1199.
DOI URL |
[18] |
WANG S, FAN C, WANG G, et al. Late Cenozoic deformation along the northwestern continuation of the Xianshuihe fault system, Eastern Tibetan Plateau[J]. Geological Society of America Bulletin, 2008,120(3/4):312-327.
DOI URL |
[19] | 许志琴, 侯立玮, 王宗秀, 等. 中国松潘—甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992. |
[20] | 李大虎, 丁志峰, 吴萍萍, 等. 鲜水河断裂带南东段的深部孕震环境与2014年康定Ms 6.3地震[J]. 地球物理学报, 2015,58(6):1941-1953. |
[21] | 周荣军, 雷建成, 黎小刚, 等. 晚第四纪以来大渡河断裂活动性的地质地貌判据[M] //.陈运泰.中国地震学会第八次学术大会论文摘要集. 北京:中国地震学会, 2000: 51. |
[22] | 王世元. 理塘—雅江断块活动性及工程稳定性评价[D]. 成都: 成都理工大学, 2007. |
[23] | 陈桂华, 徐锡伟, 闻学泽, 等. 川滇块体北—东边界活动构造带运动学转换与变形分解作用[J]. 地震地质, 2008,30(1):58-85. |
[24] | 王栋, 李天斌, 蒋良文, 等. 川藏铁路某超深埋隧道地应力特征及岩爆分析[J]. 铁道工程学报, 2017,34(4):46-50. |
[25] |
易桂喜, 龙锋, 闻学泽, 等. 2014年11月22日康定M6.3级地震序列发震构造分析[J]. 地球物理学报, 2015,58(4):1205-1219.
DOI URL |
[26] | 陈群策, 孙东生, 崔建军, 等. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 2019,25(5):853-865. |
[27] |
MOOS D, ZOBACK M D. Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: Application to continental, Deep Sea Drilling Project,and Ocean Drilling Program boreholes[J]. Journal of Geophysical Research, 1990,95(6):9305-9325.
DOI URL |
[28] |
HAIMSON B C, DOE T W. State of Stress, permeability, and fractures in the Precambrian Granite of Northern Illinois[J]. Journal of Geophysical Research, 1983,88(9):7355-7371.
DOI URL |
[29] |
ZOBACK M D, HICKMAN S. In situ study of the physical mechanisms controlling induced seismicity at Monticello Reservoir, South Carolina[J]. Journal of Geophysical Research, 1982,87(B8):6959-6974.
DOI URL |
[30] |
杨树新, 姚瑞, 崔效锋, 等. 中国大陆与各活动地块、南北地震带实测应力特征分析[J]. 地球物理学报, 2012,55(12):4207-4217.
DOI URL |
[31] | 景锋, 盛谦, 张勇慧, 等. 中国大陆浅层地壳实测地应力分布规律研究[J]. 岩石力学与工程学报, 2007,26(10):2056-2062. |
[32] |
王艳华, 崔效锋, 胡幸平, 等. 基于原地应力测量数据的中国大陆地壳上部应力状态研究[J]. 地球物理学报, 2012,55(9):3016-3027.
DOI URL |
[33] | 谢富仁, 崔效锋, 赵建涛, 等. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 2004,47(4):654-662. |
[34] | 秦向辉, 陈群策, 谭成轩, 等. 龙门山断裂带西南段现今地应力状态与地震危险性分析[J]. 岩石力学与工程学报, 2013,32(增):2870-2876. |
[35] | 臧绍先, 李昶, 魏荣强. 岩石圈流变机制的确定及影响岩石圈流变强度的因素[J]. 地球物理学进展, 2002,17(1):50-60. |
[36] | JAEGER J C, COOK N G W. Fundamentals of Rock Mechanics[M]. London: Chapman & Hall, 1979: 593. |
[37] |
ZOBACK M D, TOWNEND J. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 2001,336:19-30.
DOI URL |
[38] | ANDERSON E M. The Dynamics of Faulting and Dyke Formation with Application to Britain[M]. Edinburgh: Oliver & Boyd, 1951. |
[39] |
BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978,116(4/5) : 615-626.
DOI URL |
[40] |
YIN Z M, RANALLI G. Critical stress difference, fault orientation and slip direction in anisotropic rocks under non-Andersonian stress systems[J]. Journal of Structural Geology, 1992,14(2):237-244.
DOI URL |
[41] | 张咸恭, 王思敬, 张倬元, 等. 中国工程地质学[M]. 北京: 科学出版社, 2000. |
[42] | 王元汉, 李卧东, 李启光, 等. 岩爆预测的模糊数学综合评判方法[J]: 岩石力学与工程学报, 1998,17(5):493-501. |
[43] | 刘元坤, 罗超文, 尹健民. 西部地应力测量与岩爆分析[J]. 岩土力学, 2003,24(增刊I):94-95. |
[44] | 廖椿庭. 根据地应力测量结果设计采场和巷道[J]. 中国地质科学院地质力学研究所所刊, 1981(1):37-47. |
[45] | 丰成君, 戚帮申, 王晓山, 等. 基于原地应力实测数据探讨华北典型强震区断裂活动危险性及其对雄安新区的影响[J]. 地学前缘, 2019,26(4):170-190. |
[1] | ZHOU Hongfu, FANG Tian, XIA Chenhao, RAN Tao, XU Ruge, ZHANG Jinghua. Reactivation Characteristics and Mechanism of Engineering Disturbed Dumi Landslide in Western Sichuan Province, China [J]. Geoscience, 2023, 37(04): 1044-1053. |
[2] | ZHU Deming, LI Pengyue, HU Xiaohong, WU Xinming. Stability Analysis and Prevention Countermeasures for Residual Bodies of Baige Landslide in Jinsha River [J]. Geoscience, 2021, 35(01): 56-63. |
[3] | SUN Weifeng, GUO Changbao, ZHANG Guangze, ZHANG Yongshuang, XU Zhengxuan, TAN Chengxuan, LI Dan, WANG Xianli. In-situ Stress Measurement of Guodashan Tunnel Horizontal Borehole in West Sichuan and the Engineering Significance [J]. Geoscience, 2021, 35(01): 126-136. |
[4] | ZHOU Hongfu, RAN Tao, CHEN Bo, GAO Shu, WU Wenxian. Failure Modes and Influence of Interlaminar Fracture Zone Connectivity on Slope Stability of Bedding Rock Slope in Ya’an, West Sichuan [J]. Geoscience, 2021, 35(01): 137-144. |
[5] | MENG Wen, GUO Changbao, MAO Bangyan, LU Haifeng, CHEN Qunce, XU Xueyuan. Tectonic Stress Field and Engineering Influence of China-Nepal Railway Corridor [J]. Geoscience, 2021, 35(01): 167-179. |
[6] | ZHOU Yalong, YANG Zhibin, ZHANG Fugui, ZHANG Shunyao, SUN Zhongjun, WANG Huiyan. The Analysis of Stability and Abnormal Reproducibility of Geochemical Exploration of Natural Gas Hydrate in Qilian Mountain [J]. Geoscience, 2019, 33(06): 1314-1324. |
[7] | BU Tao. Optimization of Fracture Layout of Muti-fractured Horizontal Well in Xinchang Gas Field [J]. Geoscience, 2019, 33(03): 672-679. |
[8] | SUN Ping, ZHU Enzhen, ZHANG Shuai, HAN Shuai, WANG Gang. Mechanism of Earthquake-triggered Loess-mudstone Interface Landslide in Tianshui Area, Gansu Province [J]. Geoscience, 2019, 33(01): 218-226. |
[9] | NIE Yunfeng, YU Jing, CHEN Hongwen, WAN Ling, FAN Guanghui, FANG Qiang, WU Huaichun. Climatic, Environmental and Biological Impacts of Gas Hydrate Decomposition in Arctic Svalbard and its Surrounding Areas [J]. Geoscience, 2018, 32(05): 1012-1024. |
[10] | ZHANG Peng, QU Yaming, GUO Changbao, FENG Chengjun, MENG Wen, FAN Yulu, TAN Chengxuan, WANG Lei. Analysis of In-situ Stress Measurement and Real-time Monitoring Results in Nyching of Tibetan Plateau and Its Response to Nepal MS8.1 Earthquake [J]. Geoscience, 2017, 31(05): 900-910. |
[11] | ZHANG Wanliang, LI Ziying, QUE Zushuang, LIN Jinrong. Inspiration from Hydraulic Fracturing Technology for the Causes of the Xiangshan Hydrothermal Uranium Deposit in Jiangxi [J]. Geoscience, 2017, 31(03): 521-533. |
[12] | WANG Chaoqun, DING Yingying, HU Daogong, QI Bangshen, ZHANG Yaoling, TAO Tao, WU Huanhuan. Temperature Monitoring Results for Gas Hydrate Borehole DK-9 and Thickness of Gas Hydrate Stability Zone in the Qilian Mountains Permafrost [J]. Geoscience, 2017, 31(01): 158-166. |
[13] | FENG Chengjun, ZHANG Peng, QI Bangshen, MENG Jing, TAN Chengxuan, HU Daogong. Recent Tectonic Stress Field at the Shallow Earth’s Crust near the Tan-Lu Fault Zone [J]. Geoscience, 2017, 31(01): 46-70. |
[14] | NI Hua-yong, WANG De-wei, CHEN Xu-yu, TANG Ye-qi. Formation Characteristics and Stability Assessment of Geological Hazards in Yajiang City, Sichuan Province [J]. Geoscience, 2015, 29(2): 474-480. |
[15] | GU Tian-feng, ZHU Li-feng, HU Wei, WANG Jia-ding, LIU Ya-ming, FENG Li. Effect on Slope Stability due to Groundwater Rising Caused by Irrigation: A Case Study of Heifang Platform in Gansu, China [J]. Geoscience, 2015, 29(2): 408-413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||