Geoscience ›› 2020, Vol. 34 ›› Issue (02): 254-265.DOI: 10.19657/j.geoscience.1000-8527.2020.02.04
• Ore Deposits • Previous Articles Next Articles
FANG Yan1(), HE Mouchun1,2, DING Zhenju1, XU Yiran3, WEI Lianxi4(
)
Received:
2019-01-16
Revised:
2019-11-18
Online:
2020-05-25
Published:
2020-05-25
Contact:
WEI Lianxi
CLC Number:
FANG Yan, HE Mouchun, DING Zhenju, XU Yiran, WEI Lianxi. Ore-forming Fluid Characteristics and Genesis of the Wudaogou Gold Deposit in Dongning County, Heilongjiang Province[J]. Geoscience, 2020, 34(02): 254-265.
Fig.3 Hand specimens and microphotographs showing mineral assemblages and textures of the carbonaceous slate of the Shuang-qiaozi Formation (a-c) and diorite (d-f) from the Wudaogou gold deposit
样号 | 矿物 | δDV-SMOW/‰ | δ18OV-SMOW/‰ | δ18 |
---|---|---|---|---|
WZK0902-4-1 | 石英 | -97.4 | 13.8 | 2.46 |
WZK0902-4-2 | 石英 | -100.4 | 13.7 | 2.36 |
WZK0902-4-3 | 石英 | -100.4 | 16.2 | 4.86 |
WZK0902-4-4 | 石英 | -103.8 | 13.5 | 2.16 |
WZK0902-4-4 | 石英 | -100.5 | 13.3 | 1.96 |
WZK0902-4-6 | 石英 | -98.4 | 13.3 | 1.96 |
Table 1 Hydrogen and oxygen isotopic compositions of the Wudaogou gold deposit
样号 | 矿物 | δDV-SMOW/‰ | δ18OV-SMOW/‰ | δ18 |
---|---|---|---|---|
WZK0902-4-1 | 石英 | -97.4 | 13.8 | 2.46 |
WZK0902-4-2 | 石英 | -100.4 | 13.7 | 2.36 |
WZK0902-4-3 | 石英 | -100.4 | 16.2 | 4.86 |
WZK0902-4-4 | 石英 | -103.8 | 13.5 | 2.16 |
WZK0902-4-4 | 石英 | -100.5 | 13.3 | 1.96 |
WZK0902-4-6 | 石英 | -98.4 | 13.3 | 1.96 |
序号 | 矿物 | As | S | Fe | Se | Cu | Zn | Pb | Ni |
---|---|---|---|---|---|---|---|---|---|
WZK0902-1-55-1 | 黄铁矿 | 0.013 | 52.856 | 46.189 | — | — | — | 0.03 | — |
WZK0902-1-55-2 | 黄铁矿 | 0.131 | 52.655 | 45.996 | — | — | 0.023 | 0.006 | 0.031 |
WZK0902-1-8-1 | 黄铁矿 | 0.030 | 52.770 | 46.601 | 0.022 | — | 0.034 | 0.074 | — |
WZK0902-1-8-3 | 黄铁矿 | 2.537 | 49.753 | 44.919 | — | 0.010 | 0.024 | — | — |
WZK0902-1-8-4 | 黄铁矿 | 4.238 | 48.397 | 44.622 | — | 0.045 | — | — | — |
WZK0902-1-52-2 | 黄铁矿 | — | 52.303 | 46.018 | 0.004 | 0.026 | 0.017 | 0.003 | — |
WZK0902-8-2 | 黄铁矿 | 0.023 | 52.905 | 45.977 | — | — | — | 0.009 | — |
序号 | 矿物 | Ag | Mo | Au | Co | Sb | V | Ti | 总量 |
WZK0902-1-55-1 | 黄铁矿 | 0.003 | 0.678 | 0.072 | 0.077 | — | — | 0.06 | 99.978 |
WZK0902-1-55-2 | 黄铁矿 | 0.003 | 0.653 | — | 0.101 | — | — | — | 99.599 |
WZK0902-1-8-1 | 黄铁矿 | — | 0.751 | 0.077 | 0.062 | 0.009 | 0.008 | 0.024 | 100.462 |
WZK0902-1-8-3 | 黄铁矿 | 0.009 | 0.714 | — | 0.075 | 0.022 | — | 0.096 | 98.159 |
WZK0902-1-8-4 | 黄铁矿 | 0.005 | 0.652 | 0.092 | 0.064 | 0.001 | — | 0.086 | 98.202 |
WZK0902-1-52-2 | 黄铁矿 | 0.005 | 0.648 | — | 0.063 | 0.026 | — | 0.012 | 99.125 |
WZK0902-8-2 | 黄铁矿 | 0.018 | 0.720 | — | 0.086 | 0.006 | 0.008 | 0.026 | 99.778 |
Table 2 Electron probe composition analysis of pyrite from the Wudaogou gold deposit(%)
序号 | 矿物 | As | S | Fe | Se | Cu | Zn | Pb | Ni |
---|---|---|---|---|---|---|---|---|---|
WZK0902-1-55-1 | 黄铁矿 | 0.013 | 52.856 | 46.189 | — | — | — | 0.03 | — |
WZK0902-1-55-2 | 黄铁矿 | 0.131 | 52.655 | 45.996 | — | — | 0.023 | 0.006 | 0.031 |
WZK0902-1-8-1 | 黄铁矿 | 0.030 | 52.770 | 46.601 | 0.022 | — | 0.034 | 0.074 | — |
WZK0902-1-8-3 | 黄铁矿 | 2.537 | 49.753 | 44.919 | — | 0.010 | 0.024 | — | — |
WZK0902-1-8-4 | 黄铁矿 | 4.238 | 48.397 | 44.622 | — | 0.045 | — | — | — |
WZK0902-1-52-2 | 黄铁矿 | — | 52.303 | 46.018 | 0.004 | 0.026 | 0.017 | 0.003 | — |
WZK0902-8-2 | 黄铁矿 | 0.023 | 52.905 | 45.977 | — | — | — | 0.009 | — |
序号 | 矿物 | Ag | Mo | Au | Co | Sb | V | Ti | 总量 |
WZK0902-1-55-1 | 黄铁矿 | 0.003 | 0.678 | 0.072 | 0.077 | — | — | 0.06 | 99.978 |
WZK0902-1-55-2 | 黄铁矿 | 0.003 | 0.653 | — | 0.101 | — | — | — | 99.599 |
WZK0902-1-8-1 | 黄铁矿 | — | 0.751 | 0.077 | 0.062 | 0.009 | 0.008 | 0.024 | 100.462 |
WZK0902-1-8-3 | 黄铁矿 | 0.009 | 0.714 | — | 0.075 | 0.022 | — | 0.096 | 98.159 |
WZK0902-1-8-4 | 黄铁矿 | 0.005 | 0.652 | 0.092 | 0.064 | 0.001 | — | 0.086 | 98.202 |
WZK0902-1-52-2 | 黄铁矿 | 0.005 | 0.648 | — | 0.063 | 0.026 | — | 0.012 | 99.125 |
WZK0902-8-2 | 黄铁矿 | 0.018 | 0.720 | — | 0.086 | 0.006 | 0.008 | 0.026 | 99.778 |
矿床成因类型 | FeS2中元素含量(wB/10-6)及比值 | ||
---|---|---|---|
Se | S/Se | Co/Ni | |
岩浆热液 | >10 | <40 000 | >1 |
层控热液 | <10 | >150 000 | |
五道沟金矿 | >10 | 2 398~13 075<40 000 | 3.25>1 |
Table 3 The trace element characteristics of different type pyrite
矿床成因类型 | FeS2中元素含量(wB/10-6)及比值 | ||
---|---|---|---|
Se | S/Se | Co/Ni | |
岩浆热液 | >10 | <40 000 | >1 |
层控热液 | <10 | >150 000 | |
五道沟金矿 | >10 | 2 398~13 075<40 000 | 3.25>1 |
样品编号 | 分析矿物 | 产状 | δ34S/‰ |
---|---|---|---|
WZK0902-1-8 | 黄铁矿 | 碳质板岩裂隙内 | -8.3 |
黄铁矿 | 碳质板岩裂隙内 | -7.8 | |
黄铁矿 | 石英脉内 | -2.5 | |
黄铁矿 | 碳质板岩裂隙内 | -7.3 | |
黄铁矿 | 碳质板岩裂隙内 | -5.0 | |
黄铁矿 | 石英脉内 | -2.9 | |
黄铁矿 | 碳质板岩裂隙内 | -8.6 | |
黄铁矿 | 石英脉内 | -2.7 | |
黄铁矿 | 碳质板岩裂隙内 | -6.0 | |
WZK0902-1-52 | 黄铁矿 | 碳质板岩裂隙内 | -4.6 |
黄铁矿 | 碳质板岩裂隙内 | -7.3 | |
黄铁矿 | 碳质板岩裂隙内 | -7.5 | |
黄铁矿 | 碳质板岩裂隙内 | -4.0 | |
黄铁矿 | 碳质板岩裂隙内 | -4.2 | |
黄铁矿 | 碳质板岩裂隙内 | -5.3 | |
黄铁矿 | 碳质板岩裂隙内 | -4.0 | |
WZK0902-1-55 | 黄铁矿 | 碳质板岩裂隙内 | -7.0 |
黄铁矿 | 碳质板岩裂隙内 | -5.2 | |
黄铁矿 | 碳质板岩裂隙内 | -7.1 | |
黄铁矿 | 碳质板岩裂隙内 | -5.5 | |
黄铁矿 | 碳质板岩裂隙内 | -4.7 | |
WZK0902-1-80 | 黄铁矿 | 石英脉内 | -1.8 |
黄铁矿 | 石英脉内 | -1.9 | |
黄铁矿 | 石英脉内 | -1.2 | |
黄铁矿 | 石英脉内 | -3.7 | |
黄铁矿 | 石英脉内 | -3.9 |
Table 4 Sulphur isotopic compositions of pyrite from the Wudaogou gold deposit
样品编号 | 分析矿物 | 产状 | δ34S/‰ |
---|---|---|---|
WZK0902-1-8 | 黄铁矿 | 碳质板岩裂隙内 | -8.3 |
黄铁矿 | 碳质板岩裂隙内 | -7.8 | |
黄铁矿 | 石英脉内 | -2.5 | |
黄铁矿 | 碳质板岩裂隙内 | -7.3 | |
黄铁矿 | 碳质板岩裂隙内 | -5.0 | |
黄铁矿 | 石英脉内 | -2.9 | |
黄铁矿 | 碳质板岩裂隙内 | -8.6 | |
黄铁矿 | 石英脉内 | -2.7 | |
黄铁矿 | 碳质板岩裂隙内 | -6.0 | |
WZK0902-1-52 | 黄铁矿 | 碳质板岩裂隙内 | -4.6 |
黄铁矿 | 碳质板岩裂隙内 | -7.3 | |
黄铁矿 | 碳质板岩裂隙内 | -7.5 | |
黄铁矿 | 碳质板岩裂隙内 | -4.0 | |
黄铁矿 | 碳质板岩裂隙内 | -4.2 | |
黄铁矿 | 碳质板岩裂隙内 | -5.3 | |
黄铁矿 | 碳质板岩裂隙内 | -4.0 | |
WZK0902-1-55 | 黄铁矿 | 碳质板岩裂隙内 | -7.0 |
黄铁矿 | 碳质板岩裂隙内 | -5.2 | |
黄铁矿 | 碳质板岩裂隙内 | -7.1 | |
黄铁矿 | 碳质板岩裂隙内 | -5.5 | |
黄铁矿 | 碳质板岩裂隙内 | -4.7 | |
WZK0902-1-80 | 黄铁矿 | 石英脉内 | -1.8 |
黄铁矿 | 石英脉内 | -1.9 | |
黄铁矿 | 石英脉内 | -1.2 | |
黄铁矿 | 石英脉内 | -3.7 | |
黄铁矿 | 石英脉内 | -3.9 |
样号 | 样品 | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | Pb/10-6 | Th/10-6 | U/10-6 | μ | ω | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
测定值 | 校正值 | 测定值 | 校正值 | 测定值 | 校正值 | |||||||||
WZK0902-1-3 | 碳质板岩 | 19.70 | 19.21 | 15.71 | 15.69 | 39.52 | 38.94 | 12.59 | 19.97 | 5.59 | 9.56 | 35.18 | ||
WZK0902-1-24 | 碳质板岩 | 19.20 | 18.91 | 15.70 | 15.69 | 39.13 | 38.80 | 22.46 | 19.92 | 5.87 | 9.59 | 36.16 | ||
WZK0902-1-33 | 碳质板岩 | 19.32 | 19.03 | 15.72 | 15.70 | 39.21 | 38.89 | 21.99 | 19.80 | 5.68 | 9.61 | 35.97 | ||
WZK0902-1-37 | 碳质板岩 | 19.10 | 18.83 | 15.65 | 15.64 | 39.00 | 38.66 | 17.73 | 16.67 | 4.35 | 9.50 | 35.60 | ||
WZK0902-1-41 | 碳质板岩 | 18.89 | 18.63 | 15.60 | 15.58 | 38.73 | 38.40 | 19.54 | 17.68 | 4.53 | 9.41 | 35.04 | ||
WZK0902-1-49 | 碳质板岩 | 18.75 | 18.58 | 15.68 | 15.68 | 38.84 | 38.62 | 20.63 | 12.64 | 3.02 | 9.60 | 37.03 | ||
WZK0902-3-1 | 闪长岩 | 18.52 | 18.33 | 15.56 | 15.55 | 38.33 | 38.09 | 5.36 | 3.53 | 0.92 | 9.38 | 35.12 | ||
WZK0902-3-2 | 石英闪长岩 | 18.50 | 18.33 | 15.57 | 15.56 | 38.35 | 38.15 | 6.59 | 3.57 | 0.98 | 9.39 | 35.38 | ||
WZK0902-1-21 | 黄铁矿 | 18.54 | 18.54 | 15.73 | 15.73 | 38.91 | 38.91 | |||||||
WZK0902-1-60 | 黄铁矿 | 18.65 | 18.65 | 15.72 | 15.72 | 38.82 | 38.82 |
Table 5 Lead isotopic compositions of wall rock, intrusive rock and ore from the Wudaogou gold deposit
样号 | 样品 | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | Pb/10-6 | Th/10-6 | U/10-6 | μ | ω | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
测定值 | 校正值 | 测定值 | 校正值 | 测定值 | 校正值 | |||||||||
WZK0902-1-3 | 碳质板岩 | 19.70 | 19.21 | 15.71 | 15.69 | 39.52 | 38.94 | 12.59 | 19.97 | 5.59 | 9.56 | 35.18 | ||
WZK0902-1-24 | 碳质板岩 | 19.20 | 18.91 | 15.70 | 15.69 | 39.13 | 38.80 | 22.46 | 19.92 | 5.87 | 9.59 | 36.16 | ||
WZK0902-1-33 | 碳质板岩 | 19.32 | 19.03 | 15.72 | 15.70 | 39.21 | 38.89 | 21.99 | 19.80 | 5.68 | 9.61 | 35.97 | ||
WZK0902-1-37 | 碳质板岩 | 19.10 | 18.83 | 15.65 | 15.64 | 39.00 | 38.66 | 17.73 | 16.67 | 4.35 | 9.50 | 35.60 | ||
WZK0902-1-41 | 碳质板岩 | 18.89 | 18.63 | 15.60 | 15.58 | 38.73 | 38.40 | 19.54 | 17.68 | 4.53 | 9.41 | 35.04 | ||
WZK0902-1-49 | 碳质板岩 | 18.75 | 18.58 | 15.68 | 15.68 | 38.84 | 38.62 | 20.63 | 12.64 | 3.02 | 9.60 | 37.03 | ||
WZK0902-3-1 | 闪长岩 | 18.52 | 18.33 | 15.56 | 15.55 | 38.33 | 38.09 | 5.36 | 3.53 | 0.92 | 9.38 | 35.12 | ||
WZK0902-3-2 | 石英闪长岩 | 18.50 | 18.33 | 15.57 | 15.56 | 38.35 | 38.15 | 6.59 | 3.57 | 0.98 | 9.39 | 35.38 | ||
WZK0902-1-21 | 黄铁矿 | 18.54 | 18.54 | 15.73 | 15.73 | 38.91 | 38.91 | |||||||
WZK0902-1-60 | 黄铁矿 | 18.65 | 18.65 | 15.72 | 15.72 | 38.82 | 38.82 |
[1] | 郭晓东. 太平岭成矿带金矿床地质特征及找矿潜力分析[D]. 长春: 吉林大学, 2014: 1-71. |
[2] |
周建波, 石爱国, 景妍. 东北地块群:构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016,46(4):1042-1055.
DOI URL |
[3] | 吴福元, 曹林. 东北亚地区的若干重要基础地质问题[J]. 世界地质, 1999(2):4-16. |
[4] | 徐银波, 李锋, 张家强, 等. 黑龙江省老黑山盆地下白垩统穆棱组砂岩地球化学特征及其地质意义[J]. 现代地质, 2018,32(4):786-795. |
[5] | 王晓敏. 黑龙江省东宁县五道沟地区岩金矿找矿前景分析[J]. 黑龙江冶金, 2012(3):29-30. |
[6] |
WU F Y, YANG J, WILDE S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005,221(1/2):127-156.
DOI URL |
[7] | 王凯红, 纪春华, 王秀萍. 敦密断裂带的地质特征及演化[J]. 吉林地质, 2004,23(4):23-27. |
[8] | 蔡文艳. 黑龙江省东宁县金厂金矿床地质特征及成矿预测[D]. 长春: 吉林大学, 2017: 7. |
[9] | 丛殿阁. 黑龙江省金厂—老黑山一带印支晚期成岩成矿系统与成矿预测[D]. 北京: 中国地质大学(北京), 2016: 14. |
[10] | 李克用. 黑龙江省东宁县五道沟岩金普查报告[R]. 哈尔滨: 黑龙江有色地质勘查703队, 2013: 60-62. |
[11] | 闫文强, 高树学, 杨凤喜, 等. 五道沟金矿床控矿因素及找矿方向[J]. 黄金科学技术, 2008(3):43-44. |
[12] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 205-211. |
[13] | 韦延光, 王建国, 邓军, 等. 山东谢家沟金矿流体包裹体研究及其地质意义[J]. 现代地质, 2005,19(2):224-230. |
[14] | 陈衍景, 倪培, 范洪瑞, 等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007,23(9):2085-2108. |
[15] |
SEWARD T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 1973,37(3):379-399.
DOI URL |
[16] |
HENLEY R W. Solubility of gold in hydrothermal chloride solutions[J]. Chemical Geology, 1973,11(2):73-87.
DOI URL |
[17] | 刘英俊. 金的地球化学[M]. 北京: 科学出版社, 1991: 244-249. |
[18] |
PHILLIPS G N, EVANS K A. Role of CO2 in the formation of gold deposits[J]. Nature, 2004,429(6994):860-863.
DOI URL PMID |
[19] |
CLAYTON R N, O’NEIL J R, MAYEDA T K . Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972,77(17):3057-3067.
DOI URL |
[20] | 张理刚. 稳定同位素在地质科学中的应用:金属活化热液成矿作用及找矿[M]. 西安: 陕西科学技术出版社, 1985: 152-162. |
[21] | 张先容. 广东凡口铅锌矿床单矿物中微量元素的地球化学特征[J]. 桂林冶金地质学院学报, 1993(1):68-75. |
[22] | 曾永超, 黄书俊, 贾国相, 等. 岩浆热液型和层控型铅锌矿床中某些金属矿物的特征元素及其地质意义[J]. 地质与勘探, 1985(8):86-91. |
[23] | BRALIA A, SABATINI G, TROJA F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 1979,14(3):353-374. |
[24] | OHMOTO H, MARTIN B G. Surfur and carbon isotopes[M]//BARNES H L. Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley and Sons, 1997: 517-612. |
[25] |
KELLY W C, RYE R O. Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal[J]. Economic Geology, 1979,74(8):1721-1822.
DOI URL |
[26] | 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2003: 232-234. |
[27] | 陈瑞莉, 陈正乐, 伍俊杰, 等. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018,48(1):87-104. |
[28] | 沈渭洲. 稳定同位素地质[M]. 北京: 原子能出版社, 1987: 337-341. |
[29] | 路远发. GeoKit:一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004,33(5):459-464. |
[30] | 赵玉锁, 阎家盼. 黑龙江金厂金矿成岩成矿时代及成矿地质背景[J]. 矿物学报, 2011,31(s1):676. |
[31] | 吴开兴, 胡瑞忠, 毕献武, 等. 矿石铅同位素示踪成矿物质来源综述[J]. 地质地球化学, 2002(3):73-81. |
[32] |
MACFARLANE A W, MARCET P, LEHURAY A P, et al. Lead isotope provinces of the Central Andes inferred from ores and crustal rocks[J]. Economic Geology, 1990,85(8):1857-1880.
DOI URL |
[33] | 林尔为, 郭裕嘉. 冀东金矿集中区的铅同位素研究[J]. 长春地质学院学报, 1985,15(4):1-10. |
[34] |
ZARTMAN R E, DOE B R. Plumbotectonics—the model[J]. Tectonophysics, 1981,75(1/2):135-162.
DOI URL |
[1] | WANG Yi, LI Lixing, LI Houmin, LI Xiaosai, MA Lanjing, XING Yuliang, SUN Xinyu, DAI Yang, WANG Xiaohui. Geochronology and Genesis of the Zhaobinggou Fe-P Deposit, Northern Hebei, China [J]. Geoscience, 2024, 38(01): 46-55. |
[2] | HU Shengping, HAN Shanchu, ZHANG Hongqiu, ZHANG Yong, PAN Jiayong, ZHONG Fujun, LU Jianyan, LI Weixin. Trace Element Geochemistry and Its Metallogenic Implications of the Pyrite from the Xiwan Pb-Zn Deposit in Luzong Basin, Anhui [J]. Geoscience, 2024, 38(01): 183-197. |
[3] | WANG Qibo, ZHANG Shouting, TANG Li, LI Junjun, SHENG Yuanming. Genesis of Yangshan Fluorite Deposit in Western Henan Province: Fluorite REE Composition and Fluid Inclusion Thermomechanical Constraints [J]. Geoscience, 2023, 37(06): 1524-1537. |
[4] | DU Jun, LIU Hongwei, CHANG Honglun. Experimental Study on Fluid Inclusion Synthesis in Plagioclase [J]. Geoscience, 2023, 37(06): 1634-1643. |
[5] | XIA Jinsheng, SUN Li, ZHANG Peng, CHEN Changkuo, WANG Junzhu, SI Jiangfu. Geochemical Characteristics and Genesis of Pinghe Crystalline Graphite Deposit in Sichuan Province [J]. Geoscience, 2022, 36(06): 1486-1496. |
[6] | GAO Yinhu, YIN Gang, GONG Zeqiang, GUO Mingchun. Geological Characteristics and Genesis of the Xiangtanzi Gold Deposit in Liangdang County, Gansu Province [J]. Geoscience, 2021, 35(06): 1523-1535. |
[7] | GUO Yuncheng, LIU Jiajun, YIN Chao, GUO Mengxu. Geological Characteristics and Ore-forming Fluids of the Dahu Au-Mo Deposit in Xiaoqinling Gold Field [J]. Geoscience, 2021, 35(06): 1536-1550. |
[8] | WANG Chao, WANG Ruiting, LIU Yunhua, XUE Yushan, HU Xishun, NIU Liang. Fluid Inclusion and C-H-O-S Stable Isotopic Studies of Sanguanmiao Gold Deposit, Shangnan, Shaanxi Province [J]. Geoscience, 2021, 35(06): 1551-1564. |
[9] | MIAO Guang, DONG Guochen, QU Hailang, LIU Shufei, AI Zhonglin, SHI Pengliang, CAO Xuefeng. Ore-forming Fluid Evolution and Genesis of the Dadiangou Gold Deposit in the Western Qinling Metallogenic Belt [J]. Geoscience, 2021, 35(06): 1565-1575. |
[10] | CHANG Ming, LIU Jiajun, YANG Yongchun, ZHAI Degao, ZHOU Shuming, WANG Jianping. Fluid Inclusion Study of the Lu'erba Au Deposit in Gansu Province: Discussion on Fluid Evolution and Metallogenic Mechanism [J]. Geoscience, 2021, 35(06): 1576-1586. |
[11] | LIU Tianhang, GAO Yongbao, WEI Liyong, ZHANG Zhen, TANG Weidong, JIA Bin. Geological Characteristics and S-Pb Isotope Geochemistry of the Sirengou Pb-Zn Deposit in Xunyang, Shaanxi Province [J]. Geoscience, 2021, 35(06): 1597-1607. |
[12] | DING Kun, WANG Ruiting, LIU Kai, WANG Zhihui, SHEN Ximao. Pyrite Trace Element, Hydrogen, Oxygen, and Sulfur Isotope Geochemistry of the Xiajiadian Gold Deposit in Zhashui-Shanyang Orefield, South Qinling Orogen, and Its Metallogenic Constraints [J]. Geoscience, 2021, 35(06): 1622-1632. |
[13] | SUN Kang, CAO Yi, ZHANG Wei, ZHAO Yang. Geology and Fluid Inclusions of the Tongkuangli Molybdenum Polymetallic Deposit in Qingyang Area, Anhui Province, China [J]. Geoscience, 2021, 35(05): 1371-1379. |
[14] | HAO Peng, YANG Jilei, ZHANG Xudong, ZANG Chunyan, CHEN Rongtao, WANG Bo, SHUI Leilei, WANG Sihui, CAI Tao. Mechanism of Differential Oil-gas Distribution in the Steep-slope Zone (Northwestern Margin of Bozhong Sag): Evidence from Reconstruction of Hydrocarbon Accumulation [J]. Geoscience, 2021, 35(04): 1124-1135. |
[15] | ZENG Ruiyin, JIANG Hua, ZHU Xinyou, ZHANG Xiong, XIAO Jian, LÜ Xiaoqiang, HU Chuan, YANG Xiaokun, LI Jinlin, ZHEN Zheguang. Fluid Evolution and Mineralization Mechanism of Dongchuan Copper Deposit in Yunnan Province [J]. Geoscience, 2021, 35(01): 244-257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||